Min 2 3 4 5 6 7 Fluoresce N Ce Mau 1 2 3 4 5 6 7 Esculin Scopolin Fraxin

Min 2 3 4 5 6 7 Fluoresce N Ce Mau 1 2 3 4 5 6 7 Esculin Scopolin Fraxin

1 2 3 4 5 6 7 Fluorescence mAu Fluorescence Esculin Fraxin Scopolin 2 3 4 5 6 7 min Figure S1 : Inhibition of esculetin uptake by orthovanadate addition. Representative fluorescence chromatograms obtained using λexc 365 and λem 460 nm for root extracts of Arabidopsis f6’h1 mutant seedlings grown for 7 days on Hoagland agar plates and then transferred 7 days on Hoagland agar containing poorly 3- available Fe and supplemented with 50µM esculetin and different concentrations of orthovanadate (VO4 ). 3- 3- 3- 3- 3- 1:+0µMVO4 ,2:+50µMVO4 ,3:+100µMVO4 ,4:+200µMVO4 ,5:+250µMVO4 , 6: + 500 3- 3- µM VO4 ,7:+1mMVO4 . 90 1200 80 1000 70 60 800 50 600 40 30 400 Fraxin (nmol/g) 20 Scopolin (nmol/g) * 200 10 0 0 +Fe +Fe +Glyb +Fe +Fe +Glyb Figure S2. Inhibition of fraxetin uptake by the ATP-dependent transport inhibitor glibenclamide. Uptake of coumarins by roots grown in hydroponic Hoagland solution containing poorly available Fe (+Fe), supplemented or not with 150 µM glibenclamide (Glyb). Plants were kept for three days in the presence of coumarins and glibenclamide and coumarin glucosides were analyzed by HPLC. t test significant difference: *P <0.05(n = 4 biological repeats). Bars represent means ± SD. Intens. Fraxetin + Fe pH8 : ‐MS x106 467.9896 4 2 207.0359 676.0282 936.9805 0 100 200 300 400 500 600 700 800 900 m/z Intens. Fraxetin + Fe pH7 : ‐MS x106 4 467.9893 2 207.0359 331.9027 936.9799 0 100 200 300 400 500 600 700 800 900 m/z Intens. Fraxetin + Fe pH6 : ‐MS x106 3 467.9882 2 1 207.0356 331.9021 936.9773 0 100 200 300 400 500 600 700 800 900 m/z Intens. Fraxetin + Fe pH5 : ‐MS x106 207.0363 2 467.9884 1 331.9024 936.9776 0 Intens. 100 200 300 400 500 600 700 800Fraxetin +900 Fe pH3 : ‐m/zMS x106 207.0365 3 2 1 331.9026 467.9884 0 100 200 300 400 500 600 700 800 900 m/z Figure S3. Analysis of the stability of Fe-fraxetin compleses at different pH. Direct infusion ESI-QTOF MS analysis. Stability of the complexes decreases when pH becomes more acidic. Note that free fraxetin signal increases in acidic conditions, confirming the dissociation of the complexes. aA Bb Figure S4. Determination of the pKa of fraxetin by capillary electrophoresis. (a) Electrophoretic mobility distributions for fraxetin as a function of pH (n=3). (b) Evolution of the effective mobility of fraxetin as function of pH allowing the estimation of the pKa using equation (1) in the main text. Red cross represents the graphical determination of pKa Aa b1B1 B2b2 Cc Figure S5. Proposed structures of Fe-Fraxetin complexes. a: Fe:Fraxetin 1:1 complex, b1: Fe:Fraxetin 1:2 tetrahedral complex, b2: Fe:Fraxetin 1:2 octahedral complex; c: Fe:Fraxetin 1:3 octahedral complex. When needed the coordination sphere was completed with water molecules. Intens. 207.0312 x106 Fraxetin pH7 3 2 467.9819 1 0 100 200 300 400 500 600 700 800 900 m/z Intens. 207.0307 2+ x106 Fraxetin + Ni pH7 3 Intens. 470.9883 x105 2 1.5 1.0 472.9846 473.9872 1 0.5 467.9804 474.9839 0.0 470 471 472 473 474 475 476 m/z 0 100 200 300 400 500 600 700 800 900 m/z Intens. 207.0312 2+ x106 Fraxetin + Zn pH7 Intens. x104 476.9838 3 2.0 478.9803 1.5 2 480.9802 1.0 477.9857 479.9836 0.5 1 467.9812 0.0 476 478 480 482 484 m/z 0 100 200 300 400 500 600 700 800 900 m/z Intens. 6 207.0342 439.0349 3+ x10 3.0 Intens. Fraxetin + Al pH 7 x106 439.0349 2.5 3.0 2.5 2.0 2.0 1.5 1.5 1.0 440.0378 1.0 0.5 441.0399 0.0437 438 439 440 441 442 m/z 0.5 647.0749 879.0741 0.0 100 200 300 400 500 600 700 800 900 m/z Intens. 207.0310 x106 Fraxetin + Mn2+ pH7 Intens. 2.5 x105 466.9841 467.9826 6 2.0 5 4 1.5 3 2 1.0 468.9852 467.9826 1 0.5 0464 465 466 467 468 469 470 m/z 0.0 100 200 300 400 500 600 700 800 900 m/z Intens. 207.0307 2+ 6 Fraxetin + Cu pH7 x10 Intens. 475.9830 x105 4 1.5 3 477.9817 2 1.0 476.9863 1 478.9852 285.9557 475.9830 479.9880 0.5 0 475 476 477 478 479 480 481 482m/z 0.0 100 200 300 400 500 600 700 800 900 m/z Intens. 467.9899 3+ x106 Fraxetin + Fe pH 7 4 Intens. 467.9899 x10 4 3 3 2 2 468.9927 1 465.9938 469.9943 1 0 207.0342 464 466 468 470 472m/z 936.9837 676.0303 0 100 200 300 400 500 600 700 800 900 m/z Figure S6. Identification of non-ferric metals and iron complexes with fraxetin. Direct infusion ESI-QTOF MS analysis of a mixture of individual transition metals and synthetic fraxetin at pH 7 are presented. All tested metal solutions were prepared from chloride salts (ie: NiCl2, AlCl3, MnCl2, ZnCl2, CuCl2 and FeCl3). Color ellipses show a zoom of the MS signal of the formed metal-fraxetin complexes. Isotopic signatures of each metal are highlighted in colour. All spectra were obtained in negative ESI mode with Q-TOF Maxis Impact HD (Bruker Daltonics). (a) bhlh121 0 µM 5 µM 10 µM 30 µM 50 µM 70 µM 100 µM Fraxetin Fraxin (b) bhlh121 25 µM FeCl3 pH 7 bhlh121 25 µM FeCl3 pH 7 + Fraxetin Figure S7. Phenotypic effect of fraxetin application on bhlh121 mutant (a) Dose dependent phenotype complementation of bhlh121 mutant grown with fraxetin. Fraxetin was added at different concentrations in Hoagland medium containing 25 µM FeCl3 at pH 7. (b) Spectral deconvolution image of fraxin (green) and PI (red) in bhlh121 mutant grown in the presence of fraxetin. 80 12 +Fe -Fe +Fe -Fe b 70 c 10 60 b b b c 8 50 c 40 6 b b b 30 4 Fraxin (nmol/g) Esculin (nmol/g) 20 a 2 a 10 a a a ab 0 0 ColWT irt1 fro2 bhlhbhlh121 121 Col irt1 fro2 bhlhbhlh121 121 800 +Fe -Fe b 700 600 b b 500 b b 400 300 Scopolin (nmol/g) 200 a a a 100 0 ColWT irt1 irt1fro2 fro2bhlh121 bhlh 121 Figure S8. Coumarin accumulation in roots of iron acquisiton mutants. Analysis of fraxin, esculin and scopolin in roots of plants grown in iron sufficient conditions (50 µM Fe-EDTA, pH 5.5) and iron deficient conditions (0 µM Fe, pH 7). Means with the same letter are not significantly different according to one-way ANOVA followed by post hoc Tukey test, P < 0.05 (n = 3 biological repeats). Bars represent means ± SD. irt1 Refresh No refresh Figure S9. irt1 mutant grown in hydroponics. Daily medium change effect on irt1 mutant phenotype. irt1 MW + S + E + F 30kDa 25kDa α-FER 15kDa 10kDa 30kDa 25kDa Coomasie 15kDa Figure S10. Western Blot of ferritins accumulation in irt1 mutant supplemented or not with coumarins. Ferritins accumulation in shoots of 10-day-old irt1 mutants grown on medium containing 25 µM FeCl3 and supplemented with scopoletin (+S), esculetin (+E) or fraxetin (+F). Each loaded sample was obtained by pooling approximately 10 seedling shoots. Coomasie is shown as loading control. (a) 1,8 * 1,6 1,4 1,2 1 0,8 0,6 [Chl a + Chl b] (µg/mg) 0,4 0,2 0 T3238fer 25 µM FeCl3 T3238fer 25 µM FeCl3 T3238ferferT3238fer fer+ frax +100 µM Fraxetin + 100 µM Fraxetin (b) T3238fer + Fraxetin T3238fer Fluorescence mAu Fluorescence Esculin Scopoletin Scopolin Fraxin Equimolar standard 2 4 6 8 10 12 14 16 18 mi n Figure S11. Effect of fraxetin on tomato T3238fer mutant. (a) Complementation of T3238fer mutant with fraxetin. T3238fer mutant was transferred to Hoagland medium containing 25 µM FeCl3 at pH 7 and supplemented or not with 100 µM Fraxetin for 1 week. Central leaves were used for chlorophyll measures. Bars represent means ± SD (n = 4). (b) Representative fluorescence chromatograms obtained using λexc 365 and λem 460 nm for root extracts of T3238fer mutant grown 2 weeks on Hoagland medium (pH 5.5) and then transferred for 7 days in Hoagland medium adjusted to pH 7.5 with KOH and supplemented or not with 100 µM fraxetin. The red arrow shows fraxin peak. (mV) 50 100 90 ) 40 80 -1 V 70 -1 s 2 30 60 = 54 (mV) cm 50 -5 20 40 | (10 ep = 32 (mV) 30 |µ 10 20 10 0 0.00.10.20.30.40.50.60.70.80.91.0 Rh Figure S12. Example of graphical determination of zeta potential (). is obtained from the experimental effective mobility (μep) of a solute and depending on its hydrodynamic radius and on the ionic strength of the medium according to O’Brien-White-Ohshima model (OWO) (equation (2)), in a symmetrical electrolyte of NH4HCO3 (m+ = 0.189, m- = 0.288). The dashed lines represent the graphical determination of in a 50 mM -5 2 -1 NH4HCO3 buffer pH 7 for: Fraxetin (blue dashed lines, Rh =0.39,Rh =0.49nm,|µep| = 16.42 10 cm s -1 -5 V ) and Fraxetin-Fe(III) complex (3:1) (magenta dashed lines, Rh =0.57,Rh =0.77nm,|µep| =27.02 10 cm2 s-1 V-1) Complex Elemental Theoretical Experimental Theoretical Experimental Δ intensity composition m/z m/z intensity (%) intensity (%) (%) 465.9832 465.9843 6.4 5.2 1.2 466.9866 466.9878 1.4 1.1 0.3 + - [Fe(fraxetin)2-4H ] C20H12O10Fe 467.9786 467.9804 100 100 0 468.9816 468.9833 24.4 20.5 3.9 469.9835 469.9847 5.2 4.1 1.1 674.0204 674.0211 6.3 6.2 0.1 675.0237 675.018 2.1 4.2 -2.1 + - [Fe(fraxetin)3-4H ] C30H20O15Fe 676.0158 676.0166 100 100 0 677.0189 677.0198 35.5 35.4 0.1 678.0211 678.0223 9.5 8.3 1.2 Table S1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us