Notes on Mathematics - 1021

Notes on Mathematics - 1021

Notes on Mathematics - 1021 Peeyush Chandra, A. K. Lal, V. Raghavendra, G. Santhanam 1Supported by a grant from MHRD 2 Contents I Linear Algebra 7 1 Matrices 9 1.1 DefinitionofaMatrix .................................. .... 9 1.1.1 SpecialMatrices ................................... .. 10 1.2 OperationsonMatrices ............................... ...... 10 1.2.1 Multiplication of Matrices . .. 12 1.3 SomeMoreSpecialMatrices.. .. .. .. .. .. .. .. .. .. .. .. ....... 13 1.3.1 SubmatrixofaMatrix................................ .. 14 1.3.1 BlockMatrices ..................................... 15 1.4 MatricesoverComplexNumbers . ....... 17 2 Linear System of Equations 19 2.1 Introduction...................................... ...... 19 2.2 Definition and a Solution Method . ...... 20 2.2.1 ASolutionMethod................................... 21 2.3 RowOperationsandEquivalentSystems. ......... 21 2.3.1 Gauss Elimination Method . 24 2.4 RowReducedEchelonFormofaMatrix . ....... 26 2.4.1 Gauss-Jordan Elimination . ... 27 2.4.2 ElementaryMatrices................................ ... 29 2.5 RankofaMatrix..................................... .... 30 2.6 Existence of Solution of Ax = b ................................. 33 2.6.1 Example.......................................... 33 2.6.2 MainTheorem ...................................... 34 2.6.3 Exercises ........................................ 35 2.7 InvertibleMatrices .................................. ...... 35 2.7.1 InverseofaMatrix................................. ... 35 2.7.2 Equivalent conditions for Invertibility . ..... 37 2.7.3 InverseandGauss-JordanMethod . ....... 39 2.8 Determinant....................................... ..... 40 2.8.1 AdjointofaMatrix .................................. 43 2.8.2 Cramer’sRule ...................................... 45 2.9 Miscellaneous Exercises . ...... 46 3 Finite Dimensional Vector Spaces 49 3.1 VectorSpaces ..................................... ..... 49 3.1.1 Definition......................................... 49 3.1.2 Examples ......................................... 51 3 4 CONTENTS 3.1.3 Subspaces....................................... .. 53 3.1.4 Linear Combinations . .. 54 3.2 LinearIndependence ................................ ....... 57 3.3 Bases ............................................ ... 58 3.3.1 ImportantResults ................................. ... 60 3.4 OrderedBases ..................................... ..... 66 4 Linear Transformations 69 4.1 Definitions and Basic Properties . ....... 69 4.2 Matrix of a linear transformation . ........ 72 4.3 Rank-NullityTheorem................................. ..... 75 4.4 Similarity of Matrices . .... 80 5 Inner Product Spaces 87 5.1 Definition and Basic Properties . ....... 87 5.2 Gram-Schmidt Orthogonalisation Process . .......... 92 5.3 Orthogonal Projections and Applications . ...........100 5.3.1 MatrixoftheOrthogonalProjection . .......103 6 Eigenvalues, Eigenvectors and Diagonalization 107 6.1 IntroductionandDefinitions. ........107 6.2 diagonalization . .113 6.3 Diagonalizable matrices . .116 6.4 Sylvester’s Law of Inertia and Applications . .........121 II Ordinary Differential Equation 129 7 Differential Equations 131 7.1 Introduction and Preliminaries . .......131 7.2 SeparableEquations ................................. .. ..134 7.2.1 Equations Reducible to Separable Form . .134 7.3 ExactEquations .................................... .136 7.3.1 IntegratingFactors............................... .138 7.4 LinearEquations .................................... .141 7.5 MiscellaneousRemarks................................ .. ..143 7.6 Initial Value Problems . .145 7.6.1 OrthogonalTrajectories . .. ..149 7.7 NumericalMethods.................................. .. ..150 8 Second Order and Higher Order Equations 153 8.1 Introduction...................................... .. ..153 8.2 MoreonSecondOrderEquations . ........156 8.2.1 Wronskian........................................ 156 8.2.2 MethodofReductionofOrder . .159 8.3 Second Order equations with Constant Coefficients . ............160 8.4 NonHomogeneousEquations . .......162 8.5 VariationofParameters .............................. .......164 8.6 Higher Order Equations with Constant Coefficients . ...........166 CONTENTS 5 8.7 MethodofUndeterminedCoefficients. .........170 9 Solutions Based on Power Series 175 9.1 Introduction...................................... .. ..175 9.1.1 PropertiesofPowerSeries. .177 9.2 Solutions in terms of Power Series . .......179 9.3 Statement of Frobenius Theorem for Regular (Ordinary) Point . ..............180 9.4 Legendre Equations and Legendre Polynomials . ..........181 9.4.1 Introduction ..................................... 181 9.4.2 Legendre Polynomials . 182 III Laplace Transform 189 10 Laplace Transform 191 10.1Introduction..................................... .......191 10.2DefinitionsandExamples .............................. .. ..191 10.2.1 Examples ........................................ 192 10.3 PropertiesofLaplaceTransform . ..........194 10.3.1 InverseTransformsof RationalFunctions . ..........199 10.3.2 TransformofUnitStepFunction . .. ..199 10.4SomeUsefulResults ................................ .......200 10.4.1 Limiting Theorems . 200 10.5 Application to Differential Equations . .........202 10.6 TransformoftheUnit-ImpulseFunction . ...........204 IV Numerical Applications 207 11 Newton’s Interpolation Formulae 209 11.1Introduction..................................... .......209 11.2DifferenceOperator ................................ .......209 11.2.1 ForwardDifferenceOperator . .. ..209 11.2.2 BackwardDifferenceOperator . .. ..211 11.2.3 CentralDifferenceOperator. .......213 11.2.4 ShiftOperator ................................... .214 11.2.5 AveragingOperator ............................... .214 11.3 RelationsbetweenDifferenceoperators . ............214 11.4 Newton’s Interpolation Formulae . .........215 12 Lagrange’s Interpolation Formula 221 12.1Introduction..................................... .......221 12.2DividedDifferences.................................. .. ..221 12.3 Lagrange’s Interpolation formula . ..........224 12.4 Gauss’s and Stirling’s Formulas . .......226 13 Numerical Differentiation and Integration 229 13.1Introduction..................................... .......229 13.2 Numerical Differentiation . .......229 13.3NumericalIntegration . .. .. .. .. .. .. .. .. .. .. .. .. ........233 6 CONTENTS 13.3.1 AGeneralQuadratureFormula. .. ..233 13.3.2 TrapezoidalRule .................................. .234 13.3.3 Simpson’s Rule . 235 14 Appendix 239 14.1 SystemofLinearEquations . ........239 14.2Determinant...................................... .. ..242 14.3 PropertiesofDeterminant . .........246 14.4 Dimension of M + N .......................................250 14.5 ProofofRank-NullityTheorem . ........251 14.6 ConditionforExactness .. .. .. .. .. .. .. .. .. .. .. .. ........252 Part I Linear Algebra 7 Chapter 1 Matrices 1.1 Definition of a Matrix Definition 1.1.1 (Matrix) A rectangular array of numbers is called a matrix. We shall mostly be concerned with matrices having real numbers as entries. The horizontal arrays of a matrix are called its rows and the vertical arrays are called its columns. A matrix having m rows and n columns is said to have the order m n. × A matrix A of order m n can be represented in the following form: × a a a 11 12 ··· 1n a21 a22 a2n A = ··· , . .. . a a a m1 m2 ··· mn th th where aij is the entry at the intersection of the i row and j column. In a more concise manner, we also denote the matrix A by [aij ] by suppressing its order. a a a 11 12 ··· 1n a21 a22 a2n Remark 1.1.2 Some books also use ··· to represent a matrix. .. . a a a m1 m2 ··· mn 1 3 7 Let A = . Then a11 =1, a12 =3, a13 =7, a21 =4, a22 =5, and a23 =6. "4 5 6# A matrix having only one column is called a column vector; and a matrix with only one row is called a row vector. Whenever a vector is used, it should be understood from the context whether it is a row vector or a column vector. Definition 1.1.3 (Equality of two Matrices) Two matrices A = [aij ] and B = [bij ] having the same order m n are equal if a = b for each i =1, 2,...,m and j =1, 2, . , n. × ij ij In other words, two matrices are said to be equal if they have the same order and their corresponding entries are equal. 9 10 CHAPTER 1. MATRICES Example 1.1.4 The linear system of equations 2x +3y = 5 and 3x +2y = 5 can be identified with the 2 3: 5 matrix . "3 2: 5# 1.1.1 Special Matrices Definition 1.1.5 1. A matrix in which each entry is zero is called a zero-matrix, denoted by 0. For example, 0 0 0 0 0 02 2 = and 02 3 = . × "0 0# × "0 0 0# 2. A matrix having the number of rows equal to the number of columns is called a square matrix. Thus, its order is m m (for some m) and is represented by m only. × 3. In a square matrix, A = [aij ], of order n, the entries a11,a22,...,ann are called the diagonal entries and form the principal diagonal of A. 4. A square matrix A = [a ] is said to be a diagonal matrix if a = 0 for i = j. In other words, the ij ij 6 4 0 non-zero entries appear only on the principal diagonal. For example, the zero matrix 0n and "0 1# are a few diagonal matrices. A diagonal matrix D of order n with the diagonal entries d1, d2,...,dn is denoted by D = diag(d1,...,dn). If di = d for all i =1, 2,...,n then the diagonal matrix D is called a scalar matrix. 1 if i = j 5. A square matrix A = [aij ] with aij = 0 if i = j ( 6 is called the identity matrix, denoted by In. 1 0 0 1 0 For example, I2 = , and I3 = 0 1 0 . 0

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    255 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us