
Robust Bayesian Simple Linear Regression March 29, 2010 Readings: Hoff Chapter 9 Robust Bayesian Simple Linear Regression – p. 1/11 Body Fat Data: Intervals w/ All Data 95% confidence and prediction intervals for bodyfat.lm xbar 60 50 40 observed 30 fit conf int Bodyfat pred int 20 10 0 xbar 80 100 120 140 Abdomen Robust Bayesian Simple Linear Regression – p. 2/11 Intervals: without case 39 95% confidence and prediction intervals for bodyfat.lm2 xbar 60 40 observed fit conf int Bodyfat pred int 20 0 xbar 80 100 120 140 Abdomen Robust Bayesian Simple Linear Regression – p. 3/11 Interpretations For a given Abdominal circumference, our probability that the mean bodyfat percentage is in the intervals given by the dotted lines is 0.95. For a new man with a given Abdominal circumference, our probability that his bodyfat percentage is in the intervals given by the dashed lines is 0.95. Both have same point estimate Increased uncertainty for prediction of a new observation versus estimating the expected value. Which analysis do we use? with Case 39 or not – or something different? Robust Bayesian Simple Linear Regression – p. 4/11 Options for Handling Influential Cases Are there scientific grounds for eliminating the case? Test if the case has a different mean than population Report results with and without the case Determine if transformations (Y and/or X) reduce influence Add other predictors Change error assumptions: iid "i ∼ t(ν; 0; 1) σ Robust Regression using heavy tailed error distributions Robust Bayesian Simple Linear Regression – p. 5/11 Likelihood & Posterior ind Yi ∼ t(ν; α + βxi; 1/φ) n (ν+1) φ(y − α − βx )2 − 2 L(α; β; φ) / φ1=2 1 + i i ν Yi=1 Use Prior p(α; β; φ) / 1/φ Posterior distribution (ν+1) n 2 2 n=2 1 φ(yi − α − βxi) − p(α; β; φ j Y ) / φ − 1 + ν Yi=1 No closed formed expressions! Robust Bayesian Simple Linear Regression – p. 6/11 Scale-Mixtures of Normal Representation iid 2 Zi ∼ t(ν; 0; σ ) ) ind 2 Zi j λi ∼ N(0; σ /λi) iid λi ∼ G(ν=2; ν=2) Integrate out “latent” λ’s to obtain marginal distribution. Robust Bayesian Simple Linear Regression – p. 7/11 Latent Variable Model ind 1 Yi j α; β; φ, λ ∼ N(α + βxi; ) φλi iid λi ∼ G(ν=2; ν=2) p(α; β; φ) / 1/φ Joint Posterior Distribution: n=2 1 φ 2 p((α; β; φ, λ1; : : : ; λn j Y ) / φ − exp − λi(yi − α − βxi) × 2 X n ν=2 1 λi − exp(−λiν=2) Yi=1 Robust Bayesian Simple Linear Regression – p. 8/11 Posterior Distributions First Factorization: α; β; φ j λ1; : : : ; λn has a Normal-Gamma distribution Marginal distribution of λ1; : : : ; λn (given the data) is hard! Second Factorization: λ1; : : : ; λn j α; β; φ independent Gamma Marginal Distribution α; β; φ given the data is hard! Can we combine the easy (posterior) distributions ??? α; β; φ j λ1; : : : ; λn; Y λ1; : : : λn j α; β; φ, Y Robust Bayesian Simple Linear Regression – p. 9/11 Answer is a Qualified Yes! While the product of the two conditional distributions is not equal to the joint posterior distribution (unless they are independent), we can create a scheme to sample from the two distributions that ensures that after a sufficient number of samples that the subsequent samples represent a (dependent) sequence of draws from the joint posterior distribution! The easiest version is the single component Gibbs Sampler. Robust Bayesian Simple Linear Regression – p. 10/11 Single Component Gibbs Sampler (0) (0) (0) (0) (0) Start with (α ; β ; φ ; λ1 ; : : : ; λn ) For t = 1; : : : ; T , generate from the following sequence of Full Conditional distributions: (t 1) (t 1) (t 1) (t 1) p(α j β − ; φ − ; λ1 − ; : : : ; λn − ; Y ) (t) (t 1) (t 1) (t 1) p(β j α ; φ − ; λ1 − ; : : : ; λn − ; Y ) (t) (t) (t 1) (t 1) (t 1) p(φ j α ; β ; φ − ; λ1 − ; : : : ; λn − ; Y ) (t 1) (t) (t) (t) − p(λj j α ; β ; φ ; λ( j) ; Y ) for j = 1; : : : ; n − λ( j) is the vector of λs excluding the jth component Easy− to find and sample! Robust Bayesian Simple Linear Regression – p. 11/11.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages11 Page
-
File Size-