Robust Bayesian Simple Linear Regression March 29, 2010

Robust Bayesian Simple Linear Regression March 29, 2010

Robust Bayesian Simple Linear Regression March 29, 2010 Readings: Hoff Chapter 9 Robust Bayesian Simple Linear Regression – p. 1/11 Body Fat Data: Intervals w/ All Data 95% confidence and prediction intervals for bodyfat.lm xbar 60 50 40 observed 30 fit conf int Bodyfat pred int 20 10 0 xbar 80 100 120 140 Abdomen Robust Bayesian Simple Linear Regression – p. 2/11 Intervals: without case 39 95% confidence and prediction intervals for bodyfat.lm2 xbar 60 40 observed fit conf int Bodyfat pred int 20 0 xbar 80 100 120 140 Abdomen Robust Bayesian Simple Linear Regression – p. 3/11 Interpretations For a given Abdominal circumference, our probability that the mean bodyfat percentage is in the intervals given by the dotted lines is 0.95. For a new man with a given Abdominal circumference, our probability that his bodyfat percentage is in the intervals given by the dashed lines is 0.95. Both have same point estimate Increased uncertainty for prediction of a new observation versus estimating the expected value. Which analysis do we use? with Case 39 or not – or something different? Robust Bayesian Simple Linear Regression – p. 4/11 Options for Handling Influential Cases Are there scientific grounds for eliminating the case? Test if the case has a different mean than population Report results with and without the case Determine if transformations (Y and/or X) reduce influence Add other predictors Change error assumptions: iid "i ∼ t(ν; 0; 1) σ Robust Regression using heavy tailed error distributions Robust Bayesian Simple Linear Regression – p. 5/11 Likelihood & Posterior ind Yi ∼ t(ν; α + βxi; 1/φ) n (ν+1) φ(y − α − βx )2 − 2 L(α; β; φ) / φ1=2 1 + i i ν Yi=1 Use Prior p(α; β; φ) / 1/φ Posterior distribution (ν+1) n 2 2 n=2 1 φ(yi − α − βxi) − p(α; β; φ j Y ) / φ − 1 + ν Yi=1 No closed formed expressions! Robust Bayesian Simple Linear Regression – p. 6/11 Scale-Mixtures of Normal Representation iid 2 Zi ∼ t(ν; 0; σ ) ) ind 2 Zi j λi ∼ N(0; σ /λi) iid λi ∼ G(ν=2; ν=2) Integrate out “latent” λ’s to obtain marginal distribution. Robust Bayesian Simple Linear Regression – p. 7/11 Latent Variable Model ind 1 Yi j α; β; φ, λ ∼ N(α + βxi; ) φλi iid λi ∼ G(ν=2; ν=2) p(α; β; φ) / 1/φ Joint Posterior Distribution: n=2 1 φ 2 p((α; β; φ, λ1; : : : ; λn j Y ) / φ − exp − λi(yi − α − βxi) × 2 X n ν=2 1 λi − exp(−λiν=2) Yi=1 Robust Bayesian Simple Linear Regression – p. 8/11 Posterior Distributions First Factorization: α; β; φ j λ1; : : : ; λn has a Normal-Gamma distribution Marginal distribution of λ1; : : : ; λn (given the data) is hard! Second Factorization: λ1; : : : ; λn j α; β; φ independent Gamma Marginal Distribution α; β; φ given the data is hard! Can we combine the easy (posterior) distributions ??? α; β; φ j λ1; : : : ; λn; Y λ1; : : : λn j α; β; φ, Y Robust Bayesian Simple Linear Regression – p. 9/11 Answer is a Qualified Yes! While the product of the two conditional distributions is not equal to the joint posterior distribution (unless they are independent), we can create a scheme to sample from the two distributions that ensures that after a sufficient number of samples that the subsequent samples represent a (dependent) sequence of draws from the joint posterior distribution! The easiest version is the single component Gibbs Sampler. Robust Bayesian Simple Linear Regression – p. 10/11 Single Component Gibbs Sampler (0) (0) (0) (0) (0) Start with (α ; β ; φ ; λ1 ; : : : ; λn ) For t = 1; : : : ; T , generate from the following sequence of Full Conditional distributions: (t 1) (t 1) (t 1) (t 1) p(α j β − ; φ − ; λ1 − ; : : : ; λn − ; Y ) (t) (t 1) (t 1) (t 1) p(β j α ; φ − ; λ1 − ; : : : ; λn − ; Y ) (t) (t) (t 1) (t 1) (t 1) p(φ j α ; β ; φ − ; λ1 − ; : : : ; λn − ; Y ) (t 1) (t) (t) (t) − p(λj j α ; β ; φ ; λ( j) ; Y ) for j = 1; : : : ; n − λ( j) is the vector of λs excluding the jth component Easy− to find and sample! Robust Bayesian Simple Linear Regression – p. 11/11.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us