Magnetic Shape Memory Alloys

Magnetic Shape Memory Alloys

Sebastian Fähler and Kathrin Dörr, IFW Dresden Magnetic Shape Memory Alloys • Magnetically Induced Martensite (MIM) • Magnetically Induced Reorientation (MIR) • Requirements for actuation • “Exotic” materials www.adaptamat.com German Priority Program SPP 1239: “Modification of Microstructure and Shape of solid Materials by an external magnetic Field” www.MagneticShape.de Multiferroics magnetoelectric effect magnetic shape memory effect 2 Anisotropic magnetostriction Not important for Magnetic Shape Memory Alloys - Strain < 0.24 % + High frequency + Low magnetic field (spin-orbit Single ion effect coupling) – no collective phenomenon 3 Martensitic transformation T > T M: Austenite (high symmetry) T < T M : Martensite (low symmetry) No diffusion, reversible Twinned microstructure of martensite + Strain > 5% Thermal actuation + High forces ⇒ conventional shape memory effect - Low frequency 4 Prototype Ni-Mn-Ga, Shearing (1 1 0 ) Ni 2+x Mn 1-xGa L2 1 bcc - sheared Why are structures instable? 5 → Phonon spectra 7M Martensite 6 Martensitic transformation of magnets A. N. Vasil'ev, V. D. Ni 2.15 Mn 0.81 Fe 0.04 Ga Buchel'nikov, T. T / Takagi, V. V. K Khovailok, E. I. Estrin, 1 Physics Uspekhi 46(6) ~ Ferromagnetic (2003) 559 -588 d n Martensite a e it e s it n n e te t r s a u M A Non-magnetic Austenite Modification of structure and - High magnetic field shape by a magnetic field >> 1 T - Narrow temperature 7 regime Martensitic transformation of magnets A. N. Vasil'ev, V. D. Ni 2.15 Mn 0.81 Fe 0.04 Ga Buchel'nikov, T. T / Takagi, V. V. K Khovailok, E. I. Estrin, 1 Physics Uspekhi 46(6) ~ Ferromagnetic (2003) 559 -588 d n Martensite a e it e s it n n e te t r s a u M A Non-magnetic Austenite Modification of structure and - High magnetic field shape by a magnetic field >> 1 T - Narrow temperature 8 regime Magnetically Induced Martensite (MIM) Magnetic field favors ferromagnetic phase Clausius Clapeyron: dT ∆J = dH ∆S ∆J: magn. polarization difference in martensite and austenite state ∆S: entropy difference Magnetic actuation + Remote actuation Latent heat (magnetocaloric effect): here a problem 9 New Materials: Inverse Transformation Ni-Mn-In Magnetic field favors high temperature austenite because its ferromagnetism is stronger than that of martensite DSC: Magnetically weaker Martensite Magnetically stronger Austenite T. Krenke , M. Acet , E. F. Wassermann, X. Moya , L. Manosa, A. Shift of MS by -8 K/T Planes, Phys. Rev. B Large magnetocaloric effect 73 (17) (2006) 174413 10 Magnetically Induced Austenite (MIA) Magnetic field favors ferromagnetic phase Clausius Clapeyron: dT ∆J = dH ∆S ∆J: magn. polarization difference in martensite and austenite state ∆S: entropy difference Negative ∆ J → H stabilizes austenite 11 Magnetically Induced Austenite (MIA) Ni 45 Co 5Mn 36.7 In 13.3 FM Austenite R. Kainuma et al. Nature 439 (2006) 957 NM Martensite Hysteresis may inhibit + Strain ~ 3% reversibility ! Hysteresis losses? + No anisotropy needed 12 Rubber like behavior Ni-Mn-Ga, 7M At const T < T M F 3 2 HUT Finnland 1 HMI Berlin R. Schneider, HMI Berlin RecordedStress inMPa 0 0 2 4 6 8 10 12 Applied Strain in % Easy movement of twin boundaries - Little pinning of twin (~ MPa) boundaries at defects 13 Twin boundary movement A3: P. Entel, U. Duisburg-Essen Twin boudary Only highly symmetric twin boundaries are highly mobile But a collective movement would require to move 10 23 atoms simultaneously... 14 Microscopic view of twin boundary movement Dislocation (step + screw) as P. Müllner et al., JMMM 267 (2003) 325 elemental step of twin boundary movement „Intrinsic“ Peierls stress to S. Rajasekhara , P. J. Ferreira move Burgers vector ~ 10 -13 Pa Scripta Mat. 53 (2005) 817 15 Magnetically Induced Reorientation (MIR) Twin boundary movement No phase transition, affects only microstructure Requires: Non-cubic phase ++ Strain ≤ 10 % ! High magnetocrystalline aniosotropy + High frequency Easily movable twin boundary 16 Ferromagnet Rotation of magnetization must be avoided ⇒ high magnetocrystalline anisotropy needed 17 Domain and twin boundary dynamics Y.W. Lai, N. Scheerbaum , D. Hinz , O. Gutfleisch , R. Schaefer, L. Schultz, J. McCord, Appl . Phys. Lett. 90 (2007) 192504 TB 0 mT 200 mT H Magnetic field moves twin boundary instead of 18 magnetization rotation Integral measurement of strain and magnetization Ni-Mn-Ga 5 4 3 5M H H 3 4 2 2 5 1 HS O. Heczko, L. Straka, N. Lanska, K. Ullakko, J. Enkovaara, J. Appl. Phys. 5 4 3 1 91 (10) (2002) 8228 1 2 H o moderate switching field HS < 1 T 19 Setup of a linear actuator F F H=0 H1 H H F F H=0 20 2 3 Sebastian Fähler and Kathrin Dörr, IFW Dresden Magnetic Shape Memory Alloys • Magnetically Induced Martensite (MIM) • Magnetically Induced Reorientation (MIR) • Requirements for actuation • “Exotic” materials www.adaptamat.com German Priority Program SPP 1239: “Modification of Microstructure and Shape of solid Materials by an external magnetic Field” www.MagneticShape.de Beneficial conditions for MIR Intrinsic properties (composition, phase) • High martensitic transformation temperature ⇒ high application temperature • High magnetocrystalline anisotropy ⇒ avoids rotation of magnetization • High magnetization ⇒ high blocking stress ε =1− c • Large maximum strain 0 a Extrinsic properties (microstructure, texture) • High strain ε < ε 0 • Low switching field HS< H A • Easily moveable twin boundaries ⇒ rubber like behavior Aim: high strain in low magnetic fields 22 What is essential for the MSM effect? Not fulfilled for: Martensitic transformation Tb, Dy, Re Cu 2 Ferromagnetism Re Cu 2, La 2-xSr xCuO 4 High uniaxial magnetocrystalline Fe 70 Pd 30, Ni-Mn-In anisotropy High magnetostriction Ni-Mn-Ga Chemical ordering Fe 70 Pd 30 , Tb, Dy 23 Anisotropic magnetostriction Constrained 5M NiMnGa single crystals λ S = - 50 ppm O. Heczko , J. Mag. Mag. Mat. 290 -291 (2005) 846 Not appropriate to describe threshold like switching (Reorientation or Martensitic transformation) 24 Fe 70 Pd 30 Austenite: fcc Martensite: fct, c/a <1 two easy axis || a c a a R.D. James , M. Wuttig J. Cui , T.W. Shield, R.D. James , Phil. Mag. 77 (1998) 1273 Acta Mat. 52 (2004) 35 No uni axial anisotropy needed No chemical ordering 25 Tb 0.5 Dy 0.5 Cu 2 S. Raasch , et al. PRB 73 (2006) 64402 H no martensitic transformation orthorhombic (pseudohexagonal, 3 variants) .) .u /f B (µ M Canted magnetic order 26 1.5 % strain at 3.2 T by reorientation La 2-xSr xCuO 4 (LSCO) A. N. Lavrov , S. Komiya, Y. Ando, Nature 418 (2002) 385 A. N. Lavrov, Y. Ando, S. Komiya, I. Tsukada , Phys. Rev. Lett. 87 (2001) 17007 H = 14 T RT 1% strain 1 mm Orthorhombic, twinning in ab plane, b axis ( red domains ) aligns parallel to magnetic field Antiferromagntic , weak ferromagnetic moment 27 Dy, Tb Dy single crystal at 4 K 8% strain in Tb (40 T, 4K) S. Chikazumi et al. IEEE Trans. Mag. MAG -5(3) (1969) 265 J. J. Rhyne et al. J. Appl . Phys. 39 (2) (1968) 892 Pure elements H. H. Liebermann, C. D. Graham, Acta Met. 25 (7) (1977) 715 28 Ni-Mn-In Magnetic field favors high temperature austenite because its ferromagnetism is stronger than that of martensite H = 50 kOe DSC: Magnetically weaker Martensite Magnetically stronger Austenite T. Krenke , M. Acet , E. No significant magnetocrystalline anisotropy F. Wassermann, X. (cubic ferromagnet) Moya , L. Manosa, A. Planes, Phys. Rev. B 29 73 (17) (2006) 174413 Magnetic Shape Memory Alloys NiMnGa FePd Fe Pt Dy 3 Tb La 2-xSr xCuO 4 Re Cu MIR 2 Magnetic Martensite FMSMAMSMA Ferromagnet Ordering (SMA) MIM NiMnIn FeNiGa CoNiGa 30 Magnetic Shape Memory Alloys Magnetically Induced Martensite Magnetically Induced (MIM) Reorientation (MIR) Essential Martensitic transformation with Magnetocrystalline anisotropy large ∆J Easily movable twin boundaries Beneficial Low Hysteresis Ferromagnetism (High JS) Low ∆S Martensitic transformation Transformation around RT (rubber like behavior) Not needed Magnetocrystalline anisotropy Magnetostriction 31 32 Martensitic and Ferromagnetic Crystallographic variants Coupled by magneto- Magnetic domains Crystalline anisotropy H H F F Short axis aligned by stress Magnetization direction aligned by field Domain and variant movement → local mechanism 33 Martensitic and Ferromagnetic Crystallographic variants Coupled by magneto- Magnetic domains crystalline anisotropy H H F F Short axis aligned by stress Magnetization direction aligned by field Kerr microscopy: B1: J. McCord, 50 µm R. Schäfer, IFW Dresden Twin boundaries 90°and 180° (Variant boundaries, Domain boundaries grain boundaries) 34 Magnetic Shape Memory Alloys Magnetically Induced Martensite Magnetically Induced (MIM) Reorientation (MIR) + Little constrains on microstructure - Rubber like behavior needed + No magnetocrystalline anisotropy - High magnetocrystalline needed anisotropy Forces? - Low forces - High fields > 1 T + Moderate fields < 1 T - Works only at the vicinity of + Works below martensitic martensitic transformation transformation - Magnetocaloric effect inhibits high + High frequency (kHz) possible frequency 35.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    35 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us