SPR Gene Sepiapterin Reductase

SPR Gene Sepiapterin Reductase

SPR gene sepiapterin reductase Normal Function The SPR gene provides instructions for making the sepiapterin reductase enzyme. This enzyme is involved in the last of three steps in the production of a molecule called tetrahydrobiopterin (BH4). Other enzymes help carry out the first and second steps in this process. The sepiapterin reductase enzyme converts a molecule called 6-pyruvoyl- tetrahydropterin to tetrahydrobiopterin. Tetrahydrobiopterin helps process several building blocks of proteins (amino acids), and is involved in the production of chemicals called neurotransmitters, which transmit signals between nerve cells in the brain. Specifically, tetrahydrobiopterin is involved in the production of two neurotransmitters called dopamine and serotonin. Among their many functions, dopamine transmits signals within the brain to produce smooth physical movements, and serotonin regulates mood, emotion, sleep, and appetite. Health Conditions Related to Genetic Changes Dopa-responsive dystonia At least four mutations in the SPR gene have been found to cause dopa-responsive dystonia. This condition is characterized by a pattern of involuntary muscle contractions ( dystonia), tremors, and other uncontrolled movements and usually responds to treatment with a medication called L-Dopa. Dopa-responsive dystonia can be caused by mutations in one copy or both copies of the SPR gene in each cell. These mutations lead to the production of a sepiapterin reductase enzyme with reduced or absent function. In most parts of the body, there are alternate pathways that do not use sepiapterin reductase for the production of tetrahydrobiopterin, but these processes do not occur in the brain. Therefore, people with sepiapterin reductase deficiency have a lack of tetrahydrobiopterin in the brain, which affects the production of dopamine and serotonin. The lack of these two neurotransmitters causes the movement problems and other characteristic features of dopa-responsive dystonia. Sepiapterin reductase deficiency More than a dozen mutations in the SPR gene have been found to cause sepiapterin reductase deficiency, a condition characterized by progressive problems with movement. Sepiapterin reductase deficiency results when two copies of the SPR gene are mutated Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) 1 in each cell. These mutations include changes that replace amino acids; alter the way the gene's instructions are pieced together to produce the enzyme; or result in a shortened, nonfunctional enzyme. All these mutations lead to the production of enzymes with reduced or no function. A common mutation in affected individuals that replaces the amino acid arginine with the amino acid glycine at position 150 in the enzyme (written as Arg150Gly or R150G) prevents the production of any sepiapterin reductase. SPR gene mutations disrupt the production of sepiapterin reductase. Most SPR gene mutations result in an enzyme with little or no function. A nonfunctional sepiapterin reductase leads to a lack of tetrahydrobiopterin and a decrease in the production of dopamine and serotonin in the brain. The shortage of these neurotransmitters causes the movement abnormalities and other features of sepiapterin reductase deficiency. Sepiapterin reductase deficiency is more severe than dopa-responsive dystonia likely because both copies of the SPR gene are mutated, which leads to a more severe enzyme shortage than in dopa-responsive dystonia, in which only one copy of the gene has a mutation. Other Names for This Gene • SDR38C1 • sepiapterin reductase (7,8-dihydrobiopterin:NADP+ oxidoreductase) • short chain dehydrogenase/reductase family 38C, member 1 • SPRE_HUMAN Additional Information & Resources Tests Listed in the Genetic Testing Registry • Tests of SPR (https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=6697[geneid]) Scientific Articles on PubMed • PubMed (https://pubmed.ncbi.nlm.nih.gov/?term=%28%28sepiapterin+reductase% 5BTIAB%5D%29+OR+%28SPR%5BTIAB%5D%29%29+AND+%28%28Genes%5B MH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english% 5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D) Catalog of Genes and Diseases from OMIM • SEPIAPTERIN REDUCTASE (https://omim.org/entry/182125) Research Resources Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) 2 • ClinVar (https://www.ncbi.nlm.nih.gov/clinvar?term=SPR[gene]) • NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/6697) References • Abeling NG, Duran M, Bakker HD, Stroomer L, Thöny B, Blau N, Booij J, Poll- TheBT. Sepiapterin reductase deficiency an autosomal recessive DOPA- responsivedystonia. Mol Genet Metab. 2006 Sep-Oct;89(1-2):116-20. Epub 2006 May 2. Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/16650784) • Arrabal L, Teresa L, Sánchez-Alcudia R, Castro M, Medrano C, Gutiérrez-Solana L, Roldán S, Ormazábal A, Pérez-Cerdá C, Merinero B, Pérez B, Artuch R, Ugarte M, Desviat LR. Genotype-phenotype correlations in sepiapterin reductase deficiency. A splicing defect accounts for a new phenotypic variant. Neurogenetics. 2011Aug;12(3) :183-91. doi: 10.1007/s10048-011-0279-4. Epub 2011 Mar 24. Citation on PubMed ( https://pubmed.ncbi.nlm.nih.gov/21431957) • Bonafé L, Thöny B, Penzien JM, Czarnecki B, Blau N. Mutations in thesepiapterin reductase gene cause a novel tetrahydrobiopterin-dependentmonoamine- neurotransmitter deficiency without hyperphenylalaninemia. Am J HumGenet. 2001 Aug;69(2):269-77. Epub 2001 Jul 6. Citation on PubMed (https://pubmed.ncbi.nlm.ni h.gov/11443547) or Free article on PubMed Central (https://www.ncbi.nlm.nih.gov/p mc/articles/PMC1235302/) • Ikemoto K, Suzuki T, Ichinose H, Ohye T, Nishimura A, Nishi K, Nagatsu I,Nagatsu T. Localization of sepiapterin reductase in the human brain. Brain Res.2002 Nov 8; 954(2):237-46. Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/12414107) • Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis. 2009Jun;32(3):333- 42. doi: 10.1007/s10545-009-1067-2. Epub 2009 Feb 9. Review.Erratum in: J Inherit Metab Dis. 2009 Jun;32(3):457. Citation on PubMed (https://pubmed.ncbi.nlm.nih.go v/19234759) • Steinberger D, Blau N, Goriuonov D, Bitsch J, Zuker M, Hummel S, Müller U. Heterozygous mutation in 5'-untranslated region of sepiapterin reductase gene( SPR) in a patient with dopa-responsive dystonia. Neurogenetics. 2004Sep;5(3):187- 90. Epub 2004 Jul 6. Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/1524165 5) • Zorzi G, Redweik U, Trippe H, Penzien JM, Thöny B, Blau N. Detection ofsepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol GenetMetab. 2002 Feb;75(2):174-7. Citation on PubMed (https://pubmed.ncbi.nlm.ni h.gov/11855937) Genomic Location The SPR gene is found on chromosome 2 (https://medlineplus.gov/genetics/chromosom e/2/). Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) 3 Page last updated on 18 August 2020 Page last reviewed: 1 May 2012 Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) 4.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us