
The DIRAC code for relativistic molecular calculations Trond Saue, Radovan Bast, André Severo Pereira Gomes, Hans Jørgen Aagaard Jensen, Lucas Visscher, Ignacio Agustın Aucar, Roberto Di Remigio, Kenneth G. Dyall, Ephraim Eliav, Elke Faßhauer, et al. To cite this version: Trond Saue, Radovan Bast, André Severo Pereira Gomes, Hans Jørgen Aagaard Jensen, Lucas Viss- cher, et al.. The DIRAC code for relativistic molecular calculations. Journal of Chemical Physics, American Institute of Physics, 2020, 152, pp.204104. 10.1063/5.0004844. hal-02481706v2 HAL Id: hal-02481706 https://hal.archives-ouvertes.fr/hal-02481706v2 Submitted on 27 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The DIRAC code for relativistic molecular calculations Cite as: J. Chem. Phys. 152, 204104 (2020); https://doi.org/10.1063/5.0004844 Submitted: 18 February 2020 . Accepted: 22 April 2020 . Published Online: 26 May 2020 Trond Saue, Radovan Bast, André Severo Pereira Gomes, Hans Jørgen Aa. Jensen, Lucas Visscher, Ignacio Agustín Aucar, Roberto Di Remigio, Kenneth G. Dyall, Ephraim Eliav, Elke Fasshauer, Timo Fleig, Loïc Halbert, Erik Donovan Hedegård, Benjamin Helmich-Paris, Miroslav Iliaš, Christoph R. Jacob, Stefan Knecht, Jon K. Laerdahl, Marta L. Vidal, Malaya K. Nayak, Małgorzata Olejniczak, Jógvan Magnus Haugaard Olsen, Markus Pernpointner, Bruno Senjean, Avijit Shee, Ayaki Sunaga, and Joost N. P. van Stralen COLLECTIONS Paper published as part of the special topic on Electronic Structure SoftwareESS2020 ARTICLES YOU MAY BE INTERESTED IN Siesta: Recent developments and applications The Journal of Chemical Physics 152, 204108 (2020); https://doi.org/10.1063/5.0005077 The CRYSTAL code, 1976–2020 and beyond, a long story The Journal of Chemical Physics 152, 204111 (2020); https://doi.org/10.1063/5.0004892 Modern quantum chemistry with [Open]Molcas The Journal of Chemical Physics 152, 214117 (2020); https://doi.org/10.1063/5.0004835 J. Chem. Phys. 152, 204104 (2020); https://doi.org/10.1063/5.0004844 152, 204104 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp The DIRAC code for relativistic molecular calculations Cite as: J. Chem. Phys. 152, 204104 (2020); doi: 10.1063/5.0004844 Submitted: 18 February 2020 • Accepted: 22 April 2020 • Published Online: 26 May 2020 Trond Saue,1,a) Radovan Bast,2,b) André Severo Pereira Gomes,3,c) Hans Jørgen Aa. Jensen,4,d) Lucas Visscher,5,e) Ignacio Agustín Aucar,6,f) Roberto Di Remigio,7 Kenneth G. Dyall,8,g) Ephraim Eliav,9,h) Elke Fasshauer,10,i) Timo Fleig,1,j) Loïc Halbert,3 Erik Donovan Hedegård,11 Benjamin Helmich-Paris,12 Miroslav Iliaš,13,k) Christoph R. Jacob,14,l) Stefan Knecht,15,m) Jon K. Laerdahl,16 Marta L. Vidal,17 Malaya K. Nayak,18,n) Małgorzata Olejniczak,19,o) Jógvan Magnus Haugaard Olsen,7 Markus Pernpointner,20,p) Bruno Senjean,5,21,q) Avijit Shee,22,r) Ayaki Sunaga,23,s) and Joost N. P. van Stralen5,t) AFFILIATIONS 1Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS—Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France 2Department of Information Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway 3Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France 4Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark 5Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands 6Instituto de Modelado e Innovación Tecnológica, CONICET, and Departamento de Física—Facultad de Ciencias Exactas y Naturales, UNNE, Avda. Libertad 5460, W3404AAS Corrientes, Argentina 7Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway 8Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229, USA 9School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 10Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark 11 Division of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden 12Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany 13Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia 14Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany 15ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland 16Department of Microbiology, Oslo University Hospital, Oslo, Norway 17Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 18Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India 19Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland 20Kybeidos GmbH, Heinrich-Fuchs-Str. 94, 69126 Heidelberg, Germany 21Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands 22Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA 23Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan Note: This article is part of the JCP Special Topic on Electronic Structure Software. a)Author to whom correspondence should be addressed: [email protected]. URL: http://dirac.ups-tlse.fr/saue b)Electronic mail: [email protected]. URL: https://bast.fr J. Chem. Phys. 152, 204104 (2020); doi: 10.1063/5.0004844 152, 204104-1 Published under license by AIP Publishing The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp c)Electronic mail: [email protected] d)Electronic mail: [email protected] e)Electronic mail: [email protected] f)Electronic mail: [email protected] g)Electronic mail: [email protected] h)Electronic mail: [email protected] i)Electronic mail: [email protected] j)Electronic mail: [email protected]. URL: http://dirac.ups-tlse.fr/fleig k)Electronic mail: [email protected] l)Electronic mail: [email protected] m)Electronic mail: [email protected] n)Electronic addresses: [email protected] and [email protected] o)Electronic mail: [email protected] p)Electronic mail: [email protected] q)Electronic mail: [email protected] r)Electronic mail: [email protected] s)Current address: Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan. Electronic mail: [email protected] t)Current address: TNO, Energy Transition Studies, Radarweg 60, NL-1043NT Amsterdam, The Netherlands. Electronic mail: [email protected] ABSTRACT DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree–Fock, Kohn–Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference con- figuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, ahighlyoriginal scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model. Published under license by AIP Publishing. https://doi.org/10.1063/5.0004844., s I. INTRODUCTION the DIRAC program system. Since then, the main author team has DIRAC is a general-purpose program system for relativistic been joined by Radovan Bast and Andre Severo Pereira Gomes molecular calculations and is named in honor of P. A. M. Dirac in addition to almost 50 contributors, and Odense has since 1997 (Program for Atomic and Molecular Direct Iterative Relativistic hosted an annual “family” meeting for DIRAC developers. In addi- All–electron Calculations), who formulated1 his celebrated relativis- tion to the above authors, we would like to highlight the contri- butions to the code infrastructure by Jørn Thyssen and Miroslav tic wave equation for the electron in 1928. The beginnings of the 7 DIRAC code can be traced back to the four-component relativistic Iliaš. The latest version of the code, DIRAC19, was released on Hartree–Fock (HF) code written by Trond Saue during his mas- December 12, 2019. ter’s thesis, defended at the University of Oslo, Norway, in 1991. In Sec.II, we give a brief overview of the DIRAC program. The original code stored all integrals, provided by the HERMIT Then, in Sec. III, we provide
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages19 Page
-
File Size-