Bicmos Digital Circuit Design

Bicmos Digital Circuit Design

BiCMOS Digital Circuit Design Review of CMOS & NMOS Inverter Design - delay time - pair delay - driving large capacitive loads Features of BiCMOS Digital Circuit BiCMOS Inverters -basic type - delay time - improved type - full swing - design example a. size optimization b. driving large capacitive loads BiCMOS Gate Power-Supply Sensitivity - voltage scaling - low voltage gate I/O Interface - input - output - logic conversion Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-1 NMOS DIGITAL CIRCUITS Static inverters Load Vout ==> V in driver A B C IDS VGS=V(1) C B A VDS (driver) VDD Vth VDD D: in in Vout VGS=V(1) VGS=V(0) V(0) V(0) V(1) V(0) V(1) Vin ― Static power dissipation during Vout=V(0) Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-2 Switching Characteristics of CMOS Inverter CMOS inverter VDD VDD T 2 V (t) o t Vin(t) T1 CL +VDD Vin(t) 0 t +VDD 0.9VDD 0.1VDD t td tf tr Trajectory of n-transistor operating point during switching in CMOS inverter Input transition : X1 X2 Output transition: X2 X3 Vds=Vgs-Vt UNSATURATED SATURATED STATE STATE X2 Vgs=VDD Ids OPERATING POINT AFTER COMPLETION OF SWITCHING INITIAL OPERATING POINT X3 X1 0 VDD Vo(t) Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-3 Rise Time and Fall Time of CMOS Inverter > Equivalent Circuit V DD VDD > Fall p-DEVICE p-DEVICE t=0 t=0 I Vin ↑ c Ic Idsn R V c C o Vo n-DEVICE L n-DEVICE CL Vo ↓ SATURATION: VVoD≥ D− Vtn 0 < VV≤ − V (a) SATURATION: 0 DD tn > Rise VDD VDD p-DEVICE p-DEVICE Idsp Rc Vin ↓ I Ic Vo ↑ t=0 c Vo Vo n-DEVICE CL n-DEVICE CL LINEAR (b) SATURATION >tf = tf1 + tf2 ; fall time | tf1 | tf2 | Vo=0.9VDD Vo=0.1VDD Vo = VDD -Vtn | tf1 | tf2 | I = 0 DS()PMOS I DS()PMOS = 0 I DS()NMOS I in saturation DS()NMOS in triode Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-4 Fall Time (Cont.) t f Vo : 0.9 VDD V-DD Vtn NMOS in saturation region 2 d o β n C V ( V V)= 0 L d t 2 DD tn 0.9V t= 2CL DD f1 2 d o n V β (VDD -)Vtn ∫V DD V tn 2CL (Vtn 0.1 V)DD = 2 β n (VDD -)Vtn t f2 Vo : VDD Vtn 0.1 VDD NMOS in triode region d o β n 2 C V = [ 2(V V)V V ] L d t 2 gs tn ds ds VDD V DD V tn d Vo t= CL f2 n 2 β (VDD -)Vtn ∫ 0.1V DD Vo Vo 2(VDD -)Vtn Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-5 Fall Time (Cont.) CL 19V-DD 20Vtn t f2 = ln( ) β n (VDD -)Vtn VDD t=f t+f1 t f2 = 2CL β n (VDD -)Vtn V-0.1V 1 19V - 20V ×[ tn DD + ln( DD tn )] V-DD Vtn 2 VDD e.g. V=DD 5V,V=tp -1V, V=tn 1V 4CL t~f ~ β nVDD Rise time 4CL Similarly, t~r ~ β p VDD Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-6 Fall Time and Rise Time (Cont.) 4CL t f ≈ βn VDD 4CL t r ≈ βp[VDD For equally sized n and p devices βn = 2βp t t = r f 2 For tr =tf ⇒βp =βn ⇒Wp =2.5Wn For simplicity, 2 is used sometimes. t t = f df 2 t t = r dr 2 Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-7 Equivalent Circuit Equivalent Resistance ― 4CL tf = =ReqCL βnVDD ― 4 for minimum sized NMOS Req = βnVDD ― 4 R (PMOS)= ≈2.5R eq β V eq forn minimumDD sized PMOS Equivalent capacitance Ceq =Cgs of minimum sized transistors Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-8 Inverter-pair Delay >CMOS (a) Wp=2.5Wn;Wn and L are minimum size R eq Req Req 3.5Ceq 3.5Ceq Req Req Req tinv-pair =tf +tr =3.5Req Ceq +3.5Req Ceq =7Req Ceq (b) Wp=Wn; All minimum sized devices 2.5R eq 2.5Req 2.5Req 2Ceq 2Ceq Req Req Req tinv-pair =5Req Ceq +2Req Ceq =7Req Ceq W =2.5W ==> V =2.5V same delay time p n inv } Wp=Wn ==>Vinv =2.2V Vinv ~10% variation Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-9 Inverter-pair Delay (Cont.) Driving same size inverter L,W L,W L,W 2Ceq Req L,W L,W L,W L&W are minimum size Inverter-pair Delay=77Re qeC q= τ where τ = R e qeC q nL,mW nL,mW nL,mW nL,mW nL,mW nL,mW n R mnCeq m eq 2 Inverter-pair Delay = 7nCRe qeq= 7n 2 τ where τ = R e qeC q (Depends on channel length independent of channel width) gm µ u gs t Recall that W ==2 ()VV− CLg Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-10 Driving Large Capacitive Loads > CMOS L , f2W Lp, WP Lp, fWP p P ° ° ° CL Ln, Wn L , fW 2 n n Ln, f Wn (i) If Lp & Ln are minimum channel length , tinv-pair = 7f τ (ii) If Lp & Ln are not minimum channel length, additional calculation is required to obtain tinv-pair - Delay per stage (minimum L) (i) For Vin: (a) 3.5 τ (Wp= 2.5Wn), (b) 2 τ (Wp= Wn) (i) For Vin: (a) 3.5 τ (Wp= 2.5Wn), (b) 5 τ (Wp= Wn) > NMOS tinv-pair= 5f τ Delay per stage = f τ for Vin Delay per stage = 4f τ for Vin Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-11 Driving Large Capacitive Loads (Cont.) CL Let y = = fN Cg ( Cg : gate capacitance of the first stage inverter) lny = Nlna lny N = lna For N even , total delay N t = 7a = 3.5Na (CMOS) d 2 N (or) = 5a = 2.5Na (NMOS) 2 lny Delay α Nf = f lna (for both CMOS and NMOS) ==> For minimum td d lny ( f ) = 0 => obtain f = e to have the df lnf minimum value of Nf Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-12 Driving Large capacitive Loads (Cont.) Assuming f = e, then N = ln(y) Overall delay td (i) N even: tNd = 25. eτ (NMOS) or tNd = 35. eτ (CMOS) (ii) N is odd tNd =−[.25( 1)+1]eτ (NMOS) for tNd =−[.35( 1)+2]eτ (CMOS) } ∆Vin tNd =−[.25( 1)+4]eτ (NMOS) } for tNd =−[.35( 1)+5]eτ (CMOS) ∇Vin ** For optimum speed f=e=2.71828 But values from 2 to 10 may be used to obtain more flexibility and reduce cost(# of stages) Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-13 Features of BiCMOS Digital Circuit Combines CMOS and bipolar -CMOS Low power dissipation High density - Bipolar High drive capability Small swing logic “System on a chip” is possible - Mixed analog/digital Analog circuit can be incorporated - High voltage, high power interface (e.g. sensor, drive, ...) can be incorporated if special process is developed Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-14 BiCMOS Inverter Basic type + CMOS Bipolar(buffer) Physical structure NMOS PMOS NPN S G D S G D B E C n+ n+ p+ p+ p+ p+ n+ P-well N-well N-well p+-buried N+-buried N+-buried P-sub can be added to PMOS drain and NPN base increase latchup may be merged to reduce immunity (a) area (b) capacitance (c) # of contact Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-15 Pull-up of BiCMOS Inverter Basic type BiCMOS inverter • • VDD M βIDP ° 1 Q IDP 1 Input IDN βI M DN 2 CL Q2 Pull-up Input assume M2 & Q2 are off (initial condition) V -V V = 0 DD BE BE1 V BE t Input • VDD M βIDP Output ° 1 V -V I Q1 DD BE DP Output V V inv ° BE t CB CL+ CS1 tr td1 2 tdr CB is the capacitance at the Q1 base node CS1 is the capoacitance at the output node when CL= 0 VBECB td1 = ...time required to turn on Q IDN 1 (C +C ) tr Vinv L S1 = ...time required to change CL TO Vinv 2 βIDP ~ µpCOX W 2 where IDP ~ ( ) (Vdd-VBE-Vtp) 2 L M1 β vs. Ic β Ic t delay time t = t + r dr d1 2 Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-16 Pull-down of BiCMOS Inverter Pull-down M Q are off assume 1 & 1 initial condition VBE2= 0 Input V -V Input ° Output DD BE βI M2 DN VBE t Q CL+CS1 IDN 2 Output CB VDD-VBE Vinv VBE t td2 tf where CL is added capacitive load 2 t CS is the capacitance at the dr output node when CL= 0 V C V (CL+CS1) ~ BE B inv = + t tdf ~ + td2 f IDN βIDN 2 ~ µnCOX W 2 where IDN ~ ( ) (VDD-2VBE-Vtn) 2 L M2 ~ VSB ~ VBE β vs. Ic (body effect) β Ic Adjusting the size of M1 and M2, one can obtain tdr= tdf Tai-Haur Kuo, EE, NCKU, 1997 BiCMOS Circuit Design 3-17 Delay Time of CMOS Inverter CMOS inverter Input Output Cs2 is stray capacitance CL+CS2 Input VDD 0 t Output VDD Vinv. 0 t Vinv.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    36 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us