Journal of Intelligence Article Longitudinal IQ Trends in Children Diagnosed with Emotional Disturbance: An Analysis of Historical Data Tomoe Kanaya 1,* and Stephen J. Ceci 2 1 Department of Psychology, Claremont McKenna College, Claremont, CA 91711, USA 2 Department of Human Development, Cornell University, Ithaca, NY 14853, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-909-607-0719 Received: 25 June 2018; Accepted: 3 October 2018; Published: 8 October 2018 Abstract: The overwhelming majority of the research on the historical impact of IQ in special education has focused on children with cognitive disorders. Far less is known about its role for students with emotional concerns, including Emotional Disturbance (ED). To address this gap, the current study examined IQ trends in ED children who were repeatedly tested on various combinations of the WISC, WISC-R, and WISC-III using a geographically diverse, longitudinal database of special education evaluation records. Findings on test/re-test data revealed that ED children experienced IQ trends that were consistent with previous research on the Flynn effect in the general population. Unlike findings associated with test/re-test data for children diagnosed with cognitive disorders, however, ED re-diagnoses were unaffected by these trends. Specifically, ED children’s declining IQ scores when retested on newer norms did not result in changes in their ED diagnosis. The implications of this unexpected finding are discussed within the broader context of intelligence testing and special education policies. Keywords: IQ; Flynn effect; Emotional Disturbance; historical analysis; longitudinal methods 1. Introduction Regulations outlined in the Individuals for Disabilities Education Act [1] stipulate that children who are in need of special education services are required to undergo an IQ test as part of their qualification process. Further, if they are eligible for services, children must be re-tested at least every 3 years. Because of these IDEA stipulations, children with disabilities are one of the most heavily tested populations within America. The mandatory re-evaluations make it important for educators to understand the Flynn effect, the gradual rise in IQ scores documented in at least thirty-four countries around the world [2]. In the United States, the magnitude of the Flynn effect is approximately 0.31 points per year, totaling over three IQ points per decade on the Wechsler IQ scales. Because of the Flynn effect, an IQ norm will produce inflated means over time. As a result, the test companies publish new norms that reset the previously inflated mean back to 100 points. Therefore, the Flynn effect is most pronounced at the time of the introduction of a new norm, whereupon scores suddenly and dramatically drop [3,4]. More specifically, Kanaya et al. [3] found that children who scored one standard deviation below the mean of 100 IQ points on the WISC-R lost approximately 5 IQ points when they were re-tested on the WISC-III. This drop resulted in a significant increase in intellectual disability (ID) diagnoses at the time of re-testing because many of these children had previously obtained IQs in the 70–75 range; therefore, a 5-point drop when the newer WISC-III norm was introduced was frequently sufficient to change their diagnosis to ID. In contrast to the 5-point drop experienced by those who were re-tested on the newer WISC-III norms, children who were tested J. Intell. 2018, 6, 45; doi:10.3390/jintelligence6040045 www.mdpi.com/journal/jintelligence J. Intell. 2018, 6, 45 2 of 8 and re-tested on the same WISC-R norms experienced a small, statistically insignificant rise of less than one point. Furthermore, unlike their peers who were tested on the newer WISC-III norms, there was not a significant increase in their ID diagnosis. Similar results have also been found in children diagnosed with learning disabilities—LD [5–7]. This body of research demonstrates that the Flynn effect can result in significant changes in children’s ID and LD diagnoses, as well as their educational experience in the absence of true changes in their cognitive abilities; random factors such as the norm used to score a child’s IQ performance affects their diagnosis independent of their actual ability. In contrast to the well-documented magnitude and impact of the Flynn effect on LD and ID diagnoses, little is known about the magnitude and impact of the Flynn effect on children who are diagnosed with emotional and/or behavioral disorders (ED) [8]. Indeed, many researchers have purposefully eliminated individuals with emotional/behavioral disabilities when charting Flynn effects, e.g., [9]. ED, however, is the fourth most prevalent special education category, representing approximately 6 percent of the special education population [10]; when combined with comorbidities, it represents over 40% of placements [11]. Therefore, examining the role of the Flynn effect on this population is necessary not only for understanding trends in ED diagnoses, but also to gain a comprehensive understanding of the impact of IQ on IDEA. There are, however, substantial methodological demands to conducting this research. While ED is prevalent within the special education population, it only represents approximately 1 percent of all public school students currently [10], and was even less prevalent during the WISC and WISC-R years. Research on the Flynn effect also requires longitudinal follow-ups in order to see if the IQ test-re-test patterns have an impact on re-diagnosis rates. As such, data must be gathered from multiple school districts over several years in order to obtain the necessary follow-up data. Once these data are collected, analyses must be conducted in order to determine: whether the Flynn effect exists among individuals diagnosed with ED, a population that has been excluded from previous Flynn effect studies, and the impact (if any) of the Flynn effect on school children receiving special education services for ED. 2. Methods 2.1. Procedure IQ data from special education assessments conducted by school psychologists were collected from nine different school districts across the United States representing a diverse sample of geographical regions (Midwest, Southeast, West, South) and neighborhood types (rural, urban, suburban). These districts were chosen by distributing a brief survey regarding the special education testing and archival process to the administrative personnel in every school district in the 48 continental United States and DC during 1998–2001. Of the approximately 300 responses, an overwhelming majority reported that they destroy their students’ records seven years after graduation. While approximately 20 districts reported archiving their special education records and granted us permission to examine their files, scheduling demands, data logistics (e.g., the archives were not physically accessible), and personnel changes (e.g., the principal who granted us permission relocated to a different district) made it impossible to collect data on all but nine of these districts. Data included students’ gender, age, testing date, IQ scores, test/re-testing norms used, and special education placement recommendations. Testing dates ranged from 1968–1999. If children were tested multiple times, all IQ test data available in the children’s files were collected, including test data from before and after the target test dates. Data were gathered by traveling to each school district and recording all necessary information from each student’s psychological testing file during 2000–2002. As a result of collecting longitudinal data on children who were tested during the targeted period, the dataset includes students who were tested once and did not qualify for services, as well as students who were repeatedly tested, typically for a required triennial reevaluation. Some children were repeatedly tested on the same test (e.g., repeatedly tested either on the WISC-R or on the WISC-III), J. Intell. 2018, 6, 45 3 of 8 and some were re-tested on a different test (e.g., initially tested on the WISC-R but re-tested on the WISC-III). Altogether, data from over 11,000 special education assessments were collected. For the purposes of these analyses, children who were tested twice on the WISC norms and who were recommended for a diagnosis of ED on the WISC or WISC-R based on the first testing were extracted from the main dataset, which reduced the potential sample to 290 students. Of these, only 121 were re-evaluated at the same district, but it was necessary to include only the students who were tested on the WISC norms at the re-evaluation. These stringent selection requirements resulted in a sample of 109 school children. 2.2. Sample Students were divided into 3 testing groups: (W-R) students who were initially tested on the WISC and re-tested on the WISC-R, (R-R) students who were tested and re-tested on the WISC-R, and (R-III) students who were initially tested on the WISC-R and re-tested on the WISC-III. The majority of these 109 children were male (n = 92, 84.4%; female n = 14, 12.8%; sex unknown n = 3, 2.8%). Unfortunately, there was little uniformity within the amount and type of demographic information provided in each student’s record. For example, most school districts did not document the race of the child, and socio-economic status or free-reduced price lunch status was not included in any district (most likely because the testing officials and practitioners would not have had access to such information). Further, while the Full Scale IQ scores were included in each student’s file, the Verbal and Performance scores were not. Table1 lists the demographic information that was available for the total sample and each testing group. Table 1. Descriptive summary of demographic data, Verbal IQs (VIQ) and Performance IQs (PIQ) available by testing group.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-