The Siegel Modular Variety

The Siegel Modular Variety

The Siegel Modular Variety Eran Assaf Dartmouth College Shimura Varieties Reading Seminar, April 2020 Eran Assaf The Siegel Modular Variety 1 Symplectic Spaces 2 Siegel Modular Variety 3 Complex Abelian Varieties 4 Modular Description Structure of the talk Eran Assaf The Siegel Modular Variety 2 Siegel Modular Variety 3 Complex Abelian Varieties 4 Modular Description Structure of the talk 1 Symplectic Spaces Eran Assaf The Siegel Modular Variety 3 Complex Abelian Varieties 4 Modular Description Structure of the talk 1 Symplectic Spaces 2 Siegel Modular Variety Eran Assaf The Siegel Modular Variety 4 Modular Description Structure of the talk 1 Symplectic Spaces 2 Siegel Modular Variety 3 Complex Abelian Varieties Eran Assaf The Siegel Modular Variety Structure of the talk 1 Symplectic Spaces 2 Siegel Modular Variety 3 Complex Abelian Varieties 4 Modular Description Eran Assaf The Siegel Modular Variety Symplectic Spaces Definition Symplectic space is a pair pV ; q with V a k-vector space and : V ˆ V Ñ k a symplectic form. bilinear. alternating - pv; vq “ 0. nondegenerate - pu; V q “ 0 ñ u “ 0. Remark Definition dimpV q “ 2n W Ď V is totally isotropic if pW ; W q “ 0. Definition Symplectic basis is a basis B such that 0 ´1n r sB “ 1n 0 ˆ ˙ Eran Assaf The Siegel Modular Variety Symplectic Spaces Lemma (Milne, 6.1) W Ď V totally isotropic, BW a basis of W . Then there is a symplectic basis BV of V extending BW . Proof. By induction on n. Identify W _ with the complement of W K via v ÞÑ pv; ´q. The dual basis to BW gives a symplectic basis of W ` W _. By the induction hypothesis, pW ` W _qK also has a symplectic basis. Corollary Any two symplectic spaces of the same dimension are isomorphic. V has a symplectic basis. Eran Assaf The Siegel Modular Variety Symplectic Groups Definition The symplectic group Spp q Spp qpkq “ tg P GLpV q| pgu; gvq “ pu; vqu The group of symplectic similitudes GSpp q GSpp qpkq “ tg P GLpV q| pgu; gvq “ νpgq¨ pu; vq; νpgq P kˆu The group of projective symplectic similitudes PGSpp q PGSpp qpkq “ GSpp qpkq{kˆ Spp q ad & Gm / GSpp q / PGSpp q ν # Gm Eran Assaf The Siegel Modular Variety Shimura Datum Reductive group Let Gp q “ GSpp q. Note that Gp qad “ PGSpp q and Gp qder “ Spp q. GpRq-conjugacy class of homomorphisms h : S Ñ GR For J a complex structure on V pRq s.t. RpJu; Jvq “ Rpu; vq, i.e. 2 J P Spp qpRq such that J “ ´1, let J pu; vq :“ Rpu; Jvq. Write ` X p q “ tJ P Spp qpRq | J ¡ 0u, ´ ` ´ X p q “ tJ P Spp qpRq | J ă 0u and X p q “ X p q X p q . Lemma Ů ˆ The map J ÞÑ hJ : X p q Ñ HompC ; GpRqq defined by hJ pa ` biq “ a ` bJ identifies X with a GpRq-conjugacy class in HompCˆ; GpRqq. Eran Assaf The Siegel Modular Variety Shimura Datum Proof. For z “ a ` bi, we have phJ pzqu; hJ pzqvq “ pau ` bJu; av ` bJvq “ “ a2 pu; vq ` b2 pJu; Jvq ` abp pu; Jvq ` pJu; vqq But pJu; Jvq “ pu; vq and pJu; vq “ pJ2u; Jvq “ p´u; Jvq “ ´ pu; Jvq hence 2 2 phJ pzqu; hJ pzqvq “ pa ` b q pu; vq “ zz¯ ¨ pu; vq In particular, hJ pzq P GpRq. For g P GpRq ´1 ´1 ´1 gJg ´1 pu; vq “ pu; gJg vq “ νpgq pg u; Jpg vqq “ ´1 ´1 “ νpgq J pg u; g vq so that for J P X p q, gJg ´1 P X p q. (Cont...) Eran Assaf The Siegel Modular Variety Shimura Datum Proof. Also, for z “ a ` bi ´1 ´1 ´1 hgJg ´1 pzq “ a ` bgJg “ gpa ` bJqg “ ghJ pzqg It remains to show transitivity. For that, let Bp q be the set of symplectic bases of pV ; q. We ` 2n have Bp q Ñ X p q : B ÞÑ JB defined for B “ pei qi“1 by ei`n 1 ¤ i ¤ n JB pei q “ #´ei´n n ` 1 ¤ i ¤ 2n 2 Indeed, JB “ ´1, and B is orthonormal for J . This map is surjective (orthonormal basis for J ) and equivariant: ´1 JgB pgei q “ gJB pei q “ gJB g pgei q Spp qpRq acts transitively on Bp q, hence on X p q`. Finally, the map g P GpRq swapping ei with ei`n has νpgq “ ´1 and swaps X p q` with X p q´. Eran Assaf The Siegel Modular Variety Shimura Datum Proposition The pair pGp q; X p qq is a Shimura datum. It satisfies SV1-SV6. (SV1) For all h P X , the Hodge structure on LiepGRq defined by Ad ˝h is of type tp´1; 1q; p0; 0q; p1; ´1qu. Proof. We have LiepGRp qq Ď LiepGLRpV qq “ EndpV q and the action defined by Ad ˝h on EndpV q is pzf qpvq “ phpzq ˝ f ˝ hpzq´1qpvq Let V pCq “ V ` ` V ´ hence hpzqv “ zv for v P V ` and hpzqv “ zv¯ for v P V ´. We have ` ´ ` ´ ´ ` EndpV pCqq “ EndpV q`EndpV q`HompV ; V q`HompV ; V q with actions by 1; 1; z¯{z; z{z¯ respectively. Eran Assaf The Siegel Modular Variety Shimura Datum (SV2) For all h X , ad h i is a Cartan involution of G ad. P p p qq R Proof. 1 J “ hpiq. Let : V pCq ˆ V pCq Ñ C be the sesquilinear form 1 defined by pu; vq “ Cpu; v¯q. Then for g P GpCq 1 ´1 1 1 pgu; JpJ gJ¯ qvq “ pgu; gJv¯ q “ Cpgu; gJvq “ pu; Jvq 1 1 1 so that J pgu; adpJqpg¯qvq “ J pu; vq, and J is invariant under pad Jq 1 G . Since J is symmetric and positive(negative)-definite, J pad Jq 1 is Hermitian and positive(negative)-definite. Then G “ Up J q is a definite unitary group, hence compact. Eran Assaf The Siegel Modular Variety Shimura Datum (SV3) ad G has no Q-factor on which the projection of h is trivial. Proof. ad The root system of Spp q is irreducible, hence G is Q-simple. Finally, PGSppRq is not compact (SV4) The weight homomorphism wX : Gm Ñ GR is defined over Q. Proof. ˆ ` ´ r P R acts as r on both V and V , so wX prq “ r. Eran Assaf The Siegel Modular Variety Shimura Datum (SV5) The group ZpQq is discrete in ZpAf q. Proof. ˆ ˆ Z “ Gm, and Q is discrete in Af . (SV6) The torus Z ˝ splits over a CM-field. Proof. Z “ Gm is already split over Q. Eran Assaf The Siegel Modular Variety The Siegel Modular Variety Moduli space K Ď GpAf q compact open. HK - set of triples ppW ; hq; s; ηKq s.t. pW ; hq is a rational Hodge structure of type p´1; 0q; p0; ´1q. s or ´s is a polarization for pW ; hq. ηK is a K-orbit in HomAf pV pAf q; W pAf qq with ˆ sAf pηpuq; ηpvqq “ νpηq ¨ Af pu; vq for some νpηq P Af . An isomorphism ppW ; hq; s; ηKq Ñ ppW 1; h1q; s1; η1Kq is an isomorphism b : pW ; hq Ñ pW 1; h1q s.t. s1pbpuq; bpvqq “ µpbqspu; vq for some µpbq P Qˆ. b ˝ ηK “ η1K. Proposition (Milne, 6.3) The set ShK pGp q; X p qqpCq classifies the elements of HK modulo isomorphism. Eran Assaf The Siegel Modular Variety The Siegel Modular Variety Proof. Let a : W Ñ V be an isomorphism s.t. papuq; apvqq “ µpaqspu; vq for some µpaq P Qˆ. Then ´1 ´1 ´1 ´1 RpaJa u; aJa vq “ µpaqsRpJa u; Ja vq “ ´1 ´1 “ µpaqsRpa u; a vq “ Rpu; vq and ´1 ´1 ´1 aJa´1 pu; uq “ Rpu; aJa uq “ µpaqsRpa u; Ja uq “ ´1 ´1 “ µpaqsJ pa u; a uq so that pahqpzq :“ a ˝ hpzq ˝ a´1 P X . From Af ppa ˝ ηqpuq; pa ˝ ηqpvqq “ µpaqsAf pηpuq; ηpvqq “ “ µpaqνpηq Af pu; vq we see that a ˝ η P GpAf q. Define a map HK Ñ GpQqzX ˆ GpAf q{K : ppW ; hq; s; ηKq ÞÑ rah; a ˝ ηsK Eran Assaf The Siegel Modular Variety The Siegel Modular Variety Proof. 1 If a1 : W Ñ V is another such isomorphism, then a1 ˝ a´ P GpQq, 1 1 hence rah; a ˝ ηsK “ ra h; a ˝ ηsK , so the map is independent of a. If b : ppW ; hq; s; ηKq Ñ ppW 1; h1q; s1; η1Kq is an isomorphism, and a1 : W 1 Ñ V , then a ˝ b : W Ñ V , and ppa ˝ bqhqpzq “ a ˝ b ˝ hpzq ˝ b´1 ˝ a´1 “ a ˝ h1pzq ˝ a´1 “ pah1qpzq 1 1 so that rpa ˝ bqh; a ˝ b ˝ ηsK “ rah ; a ˝ η sK . Thus, the map factors through the equivalence relation. If ppW ; hq; s; ηKq and ppW 1; h1q; s1; η1Kq map to the same element, take a : W Ñ V and a1 : W 1 Ñ V . Then pah; a ˝ ηq “ pa1h1; a1 ˝ η1 ˝ kq. Take b “ a´1 ˝ a1 : W 1 Ñ W . Surjectivity - rh; gsK is the image of ppV ; hq; ; gKq. Eran Assaf The Siegel Modular Variety Abelian Varieties Definition An Abelian variety over k is a proper connected group variety. Remark group variety is smooth - translate the smooth locus. connected group variety is geometrically connected - 1 P Gpkq. Lemma (Rigidity Lemma) α : X ˆ Y Ñ Z with X proper and X ˆ Y geom. irreducible. αpX ˆ tyuq “ tzu “ αptxu ˆ Y q Then αpX ˆ Y q “ tzu. Observations May assume k “ k¯.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us