Hydrogen Embrittlement and Galvanic Corrosion of Titanium Alloys

Hydrogen Embrittlement and Galvanic Corrosion of Titanium Alloys

KR0000541 KAERl/AR-570/2000 Hydrogen Embrittlement and Galvanic Corrosion of Titanium Alloys 31/47 Please be aware that all of the Missing Pages in this document were originally blank pages 2000. 6. 30. ^ A • AS 71 ^- 300 "C £7]- ef 2000 ppm PWR 5 of 700 ppm eq -8-Sfe- ^ 120 ppm nfl^-ofl 4. 1/10 S. 60^) ppm 200 °C jl-g-5l«H SI7] xt))^ - 11 - 3 1 7fl -S- 3 2 3 1. 3 2. 4 3. 6 4. 11 3 14 41 41 1. 41 2. 41 3. 42 4. 43 5. 45 47 56 58 - in - 2-1 A comparison of crack growth rates observed in AISI-4130 2 steel (a y = 1330 mn/m ) exposed to three different hydrogen containing environments, all other parameters being identical 20 - iv - =L m 2-1 Schematics of possible transport reaction steps involved in the embrittlement of a structural alloy by an external molecular hydrogen environment 21 2-2 Hydrogen induced, stage II slow crack growth in a high strength martensitic AISI-4340 exposed to various hydrogen -containing environments 22 2-3 Schematics of crack growth in a high strength steel 23 2-4 Schematics of the hydrogen-sweep model for concentrating hydrogen 24 2-5 Schematics of crack growth by hydrogen-lattice-bond interactions 25 2-6 Schematic diagram of cavity nucleation and growth by diffusion of hydrogen from a supersaturated metal lattice 26 2-7 General form of the rate by hydrogen-induced slow crack growth as a function of applied stress intensity 27 2-8 The relationship between the nature of the interaction of hydrogen with metals and the position of the metals in the periodic table 28 2-9 General form of the rate oh hydrogen-induced slow crack growth as a function of applied stress intensity 29 2-10 Schematic diagram of fatigue crack growth in a hydrogen environment • 30 2-11 The phase diagram of Ti-H binary system 31 2-12 Primitive unit cell of a hep metal (open circles) with tetrahedral (full circles) and octahedral (open squares) interstitial site •••• 32 2-13 The effect of displacement rate on the tensile reduction in area of the Ti-140A alloy containing 375ppm hydrogen 33 - v - 2-14 Temperature dependence of crack growth rate in the Ti-6A1 alloy and the Ti-6A1-4V alloy containing different bulk hydrogen concentrations 34 2-15 The fracture surface of the Ti-6A1-4V alloy having an acicular microstructure and failed in gaseous hydrogen at a pressure of 90.6 kN/m2 35 2-16 The hydrogen pressure dependence of the embrittlement ratio observed in the Ti-6A1-4V alloy heat treated to give a continuous a phase and continuous ft phase matrix 36 2-17 Hydrogen-induced cracking observed in Ti-6A1-4V alloy having a continuous ft -phase matrix with acicular a phase platelets 37 2-18 Titanium potentials in 10 % NaCl solution at 25 V after standing 48 hours natural aeration 38 2-19 Hydrogen absorption of titanium in synthetic sea water at increasing cathodic potential 39 2-20 Schematics of the central role of the passive film on titanium and the consequences of film breakdown under various conditions 40 3-1 Activation polarization curves for a reversible electrode system 50 3-2 Polarization behavior of iron in 1.0 N Sodium sulfate 51 3-3 Mixed potential behavior of galvanically coupled Metals A and B 52 3-4 Factors affecting galvanic corrosion • 53 3-5 The galvanic series of various metals in flowing water at 2.4 to 4.0 m/s for 5 to 15 days at 5 to 30 °C 54 3-6 The effect of coupling of titanium to other metals on corrosion rates in seawater 55 - vi - M pickling, electroplating, stripping -§-£} Sj-S)- (delayed failure) 1875id Johnson [1] <*fl *H ^4: ^-fr ^^7loflA-1 Tda^l «V^ ^-8-A] ^I^JIE ^4. n ^ 1965^d NASA(National Aeronautics and Space Administration) ^^ 5000psi -§--§- gaseous hydrogen storage vessel ^ ^^^ti 4^1- ##$ . ^-^^- w>7ll£l$i4 [2,3]. ^12:, ^^ ^ -g-g-^1 ^i (perturbation) 7]- ^ ZL - 1 - noble t!r - 2 - 2 g- ^ ±: m 717|| 2-1 171 2-1 3 5171- XI 2 ^ 1. ^r^^l -B-2fl(The origin of hydrogen) S^ bulk *1)jS. (screened proton) ^^S. ^^fl§ ^ 5tl4. .. o _. r Safe 41 fetfl €-S-tb 61^ £-5- #31 (transport reaction step) 2-1 [5,6]. «rdi £^7li£ 4s.JL ^-g- -S-^7j-iE (applied stress intensity), . S 2-1 £7]- ^±. £*} ^^71^] ^^oi] tilffl 103~104 "r^i-g-^ -S-J13J-8- 71^- JEfe ^r4i #]S|- (hydrogen degradation) M^ 2-1 41 ^-i- 2. ^r^M °1* (The transport of hydrogen) ^ o\7)t}^ ifl^- ^t ^-^ - 4 - W (screened proton) fe £113 1/3 >§j£S. a ^xfl^ ^^ ^^- 2xiO'6m3/gatom ^ partial molar volume -i: ^fe^al g-B^ &4 [7]. lXlO'6m 7> Hls^ 3. partial molar volume^ £^4^ J£tHr ^^^ ^-31^ octahedral JEfe tetrahedral [8]. (chemisorption) &$t: ^°14. ^-^ 2-2 [9]. kinetics <fl 4^ n^ 2-2 ^ <^5^ tiV-g- ^^^ fi- «>.§- ^-417H Gaseous [5]. -rdh^^^: ^> ^r^ precursor #3|1- ^r-g- [10] ^ - 5 - H2 (gas) *•* H2* 2 (H-M) precursor H2* £>4 precursor tflJf ^- ^.7] ^^/fugacity, -8-^, tfl^- 2-3 [11] ^-8- kinetic ^-g-^r ^-fe- gaseous X\ ^014. 3. -8-5:4-8-, ^fc-3*l- ^ -8-5:4-8-, ifl €^8: M-^^fe ^11 7} [12]. 7^ -8-S:4-8- 71^-^ ^±-Q 0]%^*] ^&2\ partial molar volume ^r ^^13 °l^^r °1^7ll «ffe- Cottrell-type atmosphere 7^ ofl [13]. (crack tip) XBS3 3-3 7ov£# ^^M?145l-^ ^1°J: [14] £ - 7 - fractographic 2-4 [14] <% °}£\$: 4=1 ^^^r 7H^=^^.S u|-E|-ifl^t)- ^1^- smooth sH facet 5L [151 °l^ al-g-35. (solubility limit) [16] ^LS. H% 2-5 <fl on ^11- sweep 4. 1950\3tj| ^ [17], o]^ decohesion 7]^-S. A]Q^9X^ [18]. decohesion 7)^ -g-^^ ^^.S ^4 [19]. n^ 2-6 ofl ^ 71 ^-# #31*1-8- 7l^fe 1940^ iflofl electrolytically cathodically charged ^r^°)l ^^& #3 ^1^ 7i^# ^^ wtol-S.^xl3L ^JO.^ [20], [21-23]. 2-7 <>)$•$: &* £fe ^li^t^l ^^ ^ 7} decohesion - 9 - 551^. ^^^-^-S. 7flS baking A|_ 3. Tft°. [24,25]. 2-8 ^•°] ionic, transition, intermediated covalent =:rS}--i- [26]. ^i^^-i- o|=7lS>fe- ^Sj-1-1-^ tB^-^- transition 8 li transition occluder notch - 10 - 4. fe crack initiation, slow crack growths- rapid unstable failure 4 ^^ *T 9X^. SI ?1W #31^ =1-8.3. ^-fecfl n]4i S^ (Fracture process zone, FPZ) SUrEfl [3,27], 5°|^6i ^-g- -g ^. Mode I loading^ (stress intensity factor) i& , B, fl Kic 71 o) ^-g- - 11 - sat)-. 71 S>\ "II-f «B>S t Engineering °>71 2-9 [3] . -g-3 7J-3E. threshold 51 ^ stage I, 51 stage H ^ Kic 51 stage HI 7} SX^n 1 9X4. Threshold -§ 51 ^^/fugacity ^-^4 [28] a *)^Ti-2) %•$• Kth Stage I 5 nonkinetics kinetics 5LS. Stage II H^ 51 - 12 - , stage opening/closing 2-10 [3] synergistic 37] 3 ^S>, 51 # ^-l" 7l^ofl $J14. ^f^ ^r^ ^>7l SI 711 Al^ 51-i- 51 - 13 - 3 !=]•%• a ^^^^r *}€- M^ ^ occluder $<^4 nJ-^Ms. Jl fe 10"3 at.% ^^ 2-11 [30]. I7l<3-SH 300-600 °C ^rS^^^^ife tflH? 2000wppm ^£^1^ 300 °C 600 °C <^l^H]Ai^ ^-^^1 7^ff <Q ^ ^T^-. ^tiV^o.^ ^^1 ^db^ yV^-^1 &xln> ^i ^^7lofl^ tfl^= 450 °C r±7\ tetrahedral ^^ 2-12 [31]. a >8-tfl^H ^#^}fe * habit ^^ ^^^^ll; ^^.^ [32,33] 18% > [34]. ^ 5X10""9 cmcm2/s7} <S<H^4 [35]. exp(-61,500/i?T) [36] tfl fugacityofl ^n I^^AS ^sl-l-^ ^^^ 7>^§}cf [37] - 14 - fe ^ 30 at.% 0 Ci] ^ HjEl-^ofl^ ^^^ ^AKg- rf^-4 ^-o] 14^^ ^ $X°-*\ 200°C i ^ 7X10"6 cm2/s7l- ^^^tf [38]. 3 exp(-21,500/i?T) [39] ^ ^}^^ ^^. ^£ofl 4ef & (impact embrittelment) Q *i^^£.#l^ (low strain rate embrittlement) 711 ^#*4. ^i^^£) ££011 « T?!^-^^- ^r^i ul-8-S. [40]. oi - 15 - [39]. Hj7}^-^ 0 Jl-g-S. [41]. 6ls|$: -r^-1-^ ^tt ^rifl^^ impact loading DBTT (ductile to brittle transition temperature) 7> ^o>^1rf [42]. £§)- fe^: impact loading^ <=fl ^ 2-13 o)l DBTT 7} fe^lfe ^^^: 44 - 16 - t\) ©l-i- sustained load cracking sustained load cracking ^ lOOppm [44] .2.3. ^ife- ^3. 2Lt\- ^fl [45]. ^^ 2-14 41 or + iff H]E(-^ ^•^•i) sustained load cracking [44]. *^#^y iff [2]. <a^^^l a -8-4- ^fe "W?57} #}^-41 -el o]si^ ^^-#S| cleavage 4] iff a # platelet 7> $7fl§l-fe s.-^-^ SJ-JZ) morphology ^ 2-15 4] u)-Bl-tfl^4 [46]. s^^oi ^-^-^o] 5^ Jl JlSTfl &S.& facets #3 ^l^-^^l terrace terrace ^2:fe terrace 2-16 [48] 41 i-l-Ehfl&^-ol ^^41 n}-e)- a/0 •c- transgranular 5" 141 a #°1 &A% ^^ T^^7r a - 17 - 2-17 [48] a a ^># W transgranular PH 2-18 ^1 ^-^r^l^ 10 % NaCl -g-^ pH t 0 14 S. ^^1^1- nfl^l ASTM Gr. 2 18 pH ^^^A-1 ^7]^^- §^71- i«# ^^11 ^^l^-i- ^ ^r 584. ^r, ^-^ 3 °]^fy 12 oi^-oij pH 2-18 <^1^ Ji^ol 3 °1*H4 12 ^1^-^ pH } ^<H^lfe ^ 1- ^ 5U4. sfl^1^ ^^ 4 rtfl pH, SI4. ^^^^-S- ^ ^^^1 [51-53]. - 18 - *}s. & 7} ^ Slfe 80 °C ) ^ si pH 7> 3 ^1^> S^ 12 ol-S-M^- ^^7]- -0.70 volts (vs. SCE) ^ SUrtfl n^ 2-19 [54]. _0<7 volts 80 °C [55]. ^.^ 2-19 °)H Ji^-ol ^-^^ (anodizing) ^ "g-7] #$• (air oxidizing) ^ ^'± ^^1- ^-^^1 ^i^l^-i- ^ ^r $14 [54].

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    71 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us