Turning FAIR Data Into Reality

Turning FAIR Data Into Reality

Final Report and Action Plan from the European Commission Expert Group on FAIR Data TURNING FAIR INTO REALITY Research and Innovation 2018 Turning FAIR into reality European Commission Directorate General for Research and Innovation Directorate B – Open Innovation and Open Science Unit B2 – Open Science Contact Athanasios Karalopoulos E-mail [email protected] [email protected] European Commission B-1049 Brussels Manuscript completed in November 2018. This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2018 Print ISBN 978-92-79-96547-0 doi:10.2777/54599 KI-06-18-206-EN-C PDF ISBN 978-92-79-96546-3 doi: 10.2777/1524 KI-06-18-206-EN-N © European Union, 2018. Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders. The Expert Group operates in full autonomy and transparency. The views and recommendations in this report are those of the Expert Group members acting in their personal capacities and do not necessarily represent the opinions of the European Commission or any other body; nor do they commit the Commission to implement them. 2018 EUROPEAN COMMISSION Turning FAIR into reality Final Report and Action Plan from the European Commission Expert Group on FAIR Data European Commission Expert Group on FAIR Data Sandra Collins, National Library of Ireland, Ireland: https://orcid.org/0000-0003-2286-8540 Françoise Genova, Observatoire Astronomique de Strasbourg, France: https://orcid.org/0000-0002-6318-5028 Natalie Harrower, Digital Repository of Ireland, Ireland: https://orcid.org/0000-0002-7487-4881 Simon Hodson, CODATA, France, Chair of the Group: https://orcid.org/0000-0003-3179-7270 Sarah Jones, Digital Curation Centre, UK, Rapporteur: https://orcid.org/0000-0002-5094-7126 Leif Laaksonen, CSC-IT Center for Science, Finland: https://orcid.org/0000-0002-2161-4461 Daniel Mietchen, Data Science Institute, University of Virginia, USA: https://orcid.org/0000-0001-9488-1870 Rūta Petrauskaité, Vytautas Magnus University, Lithuania: http://orcid.org/0000-0002-6948-3202 Peter Wittenburg, Max Planck Computing and Data Facility, Germany: https://orcid.org/0000-0003-3538-0106 2018 Directorate-General for Research and Innovation 4 Turning FAIR into reality Final Report and Action Plan on FAIR Data Table of contents Foreword by Commissioner Carlos Moedas ...............................................................................................................................................7 Preface ............................................................................................................................................................................................................................8 1. Executive summary .........................................................................................................................................................................................10 1.1 Concepts for FAIR ..................................................................................................................................................................................10 1.2 Research culture and FAIR ...............................................................................................................................................................11 1.3 Technical ecosystem for FAIR data .............................................................................................................................................12 1.4 Data science and stewardship skills ..........................................................................................................................................13 1.5 Metrics for FAIR data and assessment frameworks to certify FAIR services ......................................................13 1.6 Sustainable and strategic funding ..............................................................................................................................................14 1.7 Priority recommendations ................................................................................................................................................................14 2. Concepts – why FAIR? .....................................................................................................................................................................................18 2.1 Origin of FAIR...........................................................................................................................................................................................18 2.2 Definition of FAIR ...................................................................................................................................................................................19 2.3 FAIR and Open data .............................................................................................................................................................................21 2.4 Application and implementation of FAIR ..................................................................................................................................22 2.5 A FAIR ecosystem to support FAIR Digital Objects .............................................................................................................25 3. Creating a culture of FAIR data ................................................................................................................................................................26 3.1 Research culture and FAIR data ....................................................................................................................................................26 3.2 Developing disciplinary interoperability frameworks for FAIR .....................................................................................27 3.3 Making research workflows FAIR ..................................................................................................................................................29 3.4 Data Management Plans and FAIR ..............................................................................................................................................30 3.5 Benefits and incentives ......................................................................................................................................................................32 4. Creating a technical ecosystem for FAIR data .................................................................................................................................35 4.1 FAIR Digital Objects ..............................................................................................................................................................................35 4.2 The technical ecosystem for FAIR data.....................................................................................................................................36 4.3 Data standards, metadata standards, vocabularies and ontologies .......................................................................40 4.4 Registries, repositories and certification ..................................................................................................................................43 4.5 Automatic processing at scale .......................................................................................................................................................45 5. Skills and capacity building .........................................................................................................................................................................46 5.1 Data science and data stewardship skills for FAIR ............................................................................................................46 5.2 Professionalising roles and curricula .........................................................................................................................................47 6. Measuring change ............................................................................................................................................................................................50 6.1 Metrics / indicators ...............................................................................................................................................................................50 6.2 A maturity model for FAIR ................................................................................................................................................................51 6.3 How to track and evidence change and improvements ..................................................................................................54 5 Turning FAIR into reality Final Report and Action Plan on FAIR Data 7. Funding and sustaining FAIR data ...........................................................................................................................................................55

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    78 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us