Chem 115 Myers

Chem 115 Myers

Myers Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Chem 115 Recent Reviews: • In 1984, Oguni and Omi found that a small amount of (S)-leucinol catalyzed the enantioselective addition (49% ee) of diethylzinc to benzaldehyde. Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757–824. Lemire, A.; Cote, A.; Janes, M. K.; Charette, A. B. Aldrichimica Acta 2009, 42, 71–83. Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem. Int. Ed. 2013, 52, 1890–1932. H3C O OH OH 2 mol % NH CH3 2 CH3 H + (C2H5)2Zn Background: toluene, 20 °C, 43 h 96% yield, 49% ee • The reactivity of dialkylzinc reagents towards ketones and aldehydes is low; the rate of addition of Et2Zn to benzaldehyde is negligible at room temperature. Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823–2824. • The addition of a catalytic amount of TMEDA will promote the addition of diethylzinc at room temperature to 4-benzoylbenzaldehyde in 93% yield. • In 1986, Noyori et al. published the first highly selective procedure for the asymmetric addition of diethyl- and dimethylzinc to aldehydes employing (–)-3-exo-(dimethylamino)isoborneol (DAIB) as a chiral catalyst. O OH 5 mol % TMEDA CH3 H3C CH3 H + (C2H5)2Zn toluene, 23°C, 14 h N(CH3)3 Bz Bz 93% OH racemic H3C (–)-DAIB Soai, K.; Watanabe, M.; Koyano, M. Bull. Chem. Soc. Jpn. 1989, 25, 2124–2125. O 2 mol % (–)-DAIB OH + R' Zn • X-Ray structures of dimethylzinc and its adduct with 1,3,5-trimethylhexahydro-1,3,5-triazine 2 R H toluene, 0 °C R R' show that upon bis-complexation, dimethylzinc shifts from a linear geometry to a tetrahedral geometry and that the carbon-zinc bond length increases from 1.95 Å to 1.98 Å. This is proposed to increase the nucleophilicity of the methyl groups, accelerating addition to R R' % yield % ee carbonyl compounds. Ph Et 97 98 CH3 H3C Ph 91 N N Me 59 H C 3 N p-ClC6H4 Et 93 N N N CH3 86 2 H3C CH3 H3C H3C Zn CH3 p-CH OC H 145 ° Zn CH3 3 6 4 Et 96 93 H3C N CH 180 ° N 3 (E)-PhC(H)=CH Et 81 96 N Zn—C PhCH2CH2 Et 80 90 H3C 1.95 Å n-C H Et 81 61 Zn—C 6 13 1.98 Å Hursthouse, M. B.; Motewaili, M.; O'Brien, P.; Walsh, J. R.; Jones, A. C. J. Mater. Chem. Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071-6072. 1991, 1, 139–140. Fan Liu, Michael Furrow 1 Myers Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Chem 115 Mechanism: • A non-linear dependence of product ee on catalyst ee was observed. Heterochiral dimerization to form an unreactive species was invoked to account for in situ amplification of product ee: • The stoichiometry of aldehyde, diethylzinc, and DAIB ligand determines reactivity: alkylation occurs only when the ratio of Et2Zn : DAIB is greater than 1: O OH 8 mol % (–)-DAIB OH cat. (–)-DAIB CH O 3 15 % ee CH3 H + (C2H5)2Zn toluene, 0 °C, 6 h H + (C2H5)2Zn 92% yield, 95% ee aldehyde : Et2Zn : DAIB % yield % ee 1 : 1 : 0 0 — H3C CH3 H CH CH3 3 R Zn O 1 : 1 : 1 1 0 N 50 : 50 : 1 97 98 Zn Et + N O H3C H3C CH H C H 3 3 H3C CH3 Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028–4036. (–)-DAIB (+)-DAIB • This observation is consistent with a mechanistic proposal involving two Zn atoms per aldehyde: H C CH 3 3 H C CH H C CH 3 3 CH3 3 3 CH CH 3 N(CH3)3 3 CH3 N N OH Zn R Zn R Et2Zn H3C H3C O O H3C H H3C H3C CH3 H CH3 H R Zn O O H C CH 3 3 R Zn CH3 N N H3C CH3 H C CH N 3 H 3 H3C H3C Zn Et H3C CH3 CH3 N O Zn Et H3C CH O 3 H3C CH Zn + 3 Et Et heterochiral dimer, more stable, does not readily dissociate CH3 EtZnO H O H H CH3 N Et Ar Ar Zn R O H CH3 CH3 R Zn O H3C CH3 H3C CH3 H3C CH3 CH3 CH3 N Et slow Et H3C N Zn N Zn H C 3 H3C CH3 O O H3C CH3 H3C CH3 O H O H Zn Zn Et Et Et Ar Et Ar homochiral dimer, less stable, dissociates Itsuno, S.; Fréchet, J. M. J. J. Org. Chem. 1987, 52, 4142–4143. Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028-4036. Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1987, 28, 5237–5240. Oguni, N.; Matsuda, Y.; Kaneko, T. J. Am. Chem. Soc. 1988, 110, 7877. Evans, D. A. Science 1988, 240, 420–426. Fan Liu, Michael Furrow 2 Myers Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Chem 115 Preparation of Organozinc Reagents: • In many cases, lithium or magnesium halide byproducts must be removed to avoid salt complexation with chiral additives in subsequent enantioselective processes. Lemire, A.; Cote, A.; Janes, M. K.; Charette, A. B. Aldrichimica Acta 2009, 42, 71–83. Knochel, P.; Perea, J. J. A.; Jones, P. Tetrahedron 1998, 54, 8275–8319. • 1,4-Dioxane forms insoluble complexes with magnesium halides and allows the synthesis of diorganozinc reagents that were not commercially available to subsequently be used in asymmetric • Metallic Zinc Insertion: additions to carbonyl compounds: • One of the early methods involves treatment of an alkyliodide or bromide with zinc dust or an 1. activated form of Zn, such as zinc-copper couple (Zn(Cu)). The method requires rather harsh MgBr (salt free) conditions and is limited to low molecular weight dialkylzinc species due to the need to distill the (1.0 M in Et2O) 2. dioxane ZnCl2 Zn products while avoiding competitive Wurtz coupling: (1.0 M in Et2O) 3. filtration O OH Schlenk O THF, –75 ºC O Zn-Cu [EtZnI] Equilibrium Et2Zn distillation H N N EtI + EtBr + + Et2Zn OLi neat, reflux 200 ºC OBn OBn [EtZnBr] BrZnI <30 mmHg CH3 >80% 93% ee 89 % N • methanesulfonic acid can be used to activate zinc metal: O von dem bussche-Hünnefeld, J. L.; Seebach, D. Tetrahedron 1992, 48, 5719–5730. NC F Brubaker, J. D.; Myers, A. G. Org. Lett. 2007, 9, 3523–3525. O 1. Zn EtO2C F • Zn(OCH3)2 can also be used. The byproduct, CH3OMgCl, precipitates from the reaction mixture and MsOH (5 mol%) Cl Cl EtO2C Br EtO2C ZnBr 10.0 kg salt-free ethereal solutions of diorganozinc can be obtained after filtration or centrifugation: THF, 70 ºC Cl Cl 2. 6N HCl 11.5 kg 10.6 kg Et O 72% CH3 2 CH3 CH3 2 x MgCl + Zn(OCH3)2 Zn + 2 CH3OMgCl H3C 0 ! 23 ºC H3C CH3 Choi, B. S.; Chang, J. H.; Choi, H.-W.; Kim, Y. K.; Lee, K. K.; Lee, K. W.; Lee, J. H.; Heo, T.; Nam, > 95% D. H.; Shin, H. Org. Process Res. Dev. 2005, 9, 311–313. • Transmetallation with a Zinc Salt: Cote, A.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 2771–2773. • N,N,N,N-tetraethylethylenediamine (TEEDA) can be used to scavenge salts and the resulting in situ • Substrates that are less readily prepared by direct reduction can be prepared by treatment of a formed zinc reagents function in catalytic asymmetric addition reactions to aldehydes: Zinc(II) halide with two equivalents of alkyllithium or alkylmagnesium halide: 3. O H OH Pd(PPh3)4 Br 1. n-BuLi 2. ZnCl2 (5 mol%) N O N O 1. n-BuLi N O ZnCl2 N O 60 ºC MTBE hexanes H3C CH3 O THF, –60 ºC Br H Li ZnCl 90% N SO2CH3 OH TEEDA unstable stable N N H3C (equiv) yield ee above –50 ºC H3C CH3 (5 mol%) SO CH 2 3 H3C CH3 0 – 2 TEEDA 0.8 99 92 Reeder, M. R.; Gleaves, H. E.; Hoover, S. A.; Imbordino, R. J.; Pangborn, J. J. Org. Process Res. Dev. 2003, 7, 696–699. Kim, J. G.; Walsh, P. J. Angew. Chem. Int. Ed. 2006, 45, 4175–4178. Fan Liu, Michael Furrow 3 Myers Organozinc Reagents: Asymmetric Additions to Carbonyl Compounds Chem 115 • Transmetallation with a Diorganozinc Reagent: • Halogen-Diorganozinc Exchange: • Functionalized diorganozinc reagents can be prepared via transmetallation of organolithium, • Iodine-zinc exchange reactions have been used to prepare dialkylzinc species containing esters, organoboron, organonickel, and organozirconium with dimethyl-, diethyl-, or diisopropylzinc: nitriles, chlorides, sulfonamides, and boronic acids. CuI or UV light were found to accelerate the reaction. Removal of excess Et2Zn and EtI was necessary to drive the reaction: • organolithium: Et2Zn, CuI (0.1 mol%) O OZn–Et Li+ O neat, 50 °C; 2 HO OPiv Me2PhSiLi, OPiv OPiv AcOCH2(CH2)3CH2I (AcOCH2(CH2)3CH2)2Zn ZnEt2; 0.1 mm Hg, 50 °C Ph Ph OBn MoOPH Si OBn Si OBn > 95% H H3C H H3C H OTBS 82% CH3 OTBS CH3 OTBS Rozema, M. J.; Eisenberg, C.; Lütjens, H.; Ostwald, R.; Belyk, K.; Knochel, P. Tetrahedron Lett. 1993, 34, 3115–3118. Substrate decomposition occurred in the absence of ZnEt . 2 Rozema, M. J.; Sidduri, A.; Knochel, P. J. Org. Chem. 1992, 57, 1956–1958. Milgram, B. C.; Liau, B. B.; Shair, M. D. Org. Lett. 2011, 13, 6436–6439. n-Hex OAc • organoboron: Et2Zn O O O CuI (3 mol%) n-Hex O neat, 50 °C O t-Bu OEt CO Et CO2Et 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us