Velocity Kinematics the Jacobian

Velocity Kinematics the Jacobian

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Velocity Kinematics The Jacobian Dr.-Ing. John Nassour 13.01.2018 J.Nassour 1 Motivation • Positions are not enough when commanding motors. • Velocities are needed for better interaction. • How fast the end-effector move given joints velocities? • How fast each joint needs to move in order to guarantee a desired end-effector velocity. 13.01.2018 J.Nassour 2 Differential Motion Forward Kinematics 휃 → 푥 Differential Kinematics 휃 + 훿휃 → 푥+훿푥 Base We are interested in studying the relationship: 훿휃 ↔ 훿푥 Linear and angular velocities 13.01.2018 J.Nassour 3 Joint’s Velocity Prismatic Joint: 푞 푣 = 푞 푘 푘 푣 휔 = 0 푣 Revolute Joint : 휔 푣 = 푞 푘 × 푟 푞 휔 = 푞 푘 푘 푟 푘 is the unit vector. 13.01.2018 J.Nassour 4 Joint’s Velocity With more than one joint, the end effector velocities are a function of joint velocity and position: 휔 푞1, 푞1 푣 푣 푞2, 푞2 = 푓(푞 , 푞 , 푞 , 푞 ) 휔 1 2 1 2 For any number of joints: 푣 = 푓(푞 , 푞) 휔 13.01.2018 J.Nassour 5 The Jacobian The Jacobian is a matrix that is a function of joint position, that linearly relates joint velocity to tool point velocity. 휔 푣 푞 1 푞1, 푞1 푣 = 풥(푞1, 푞2) 푞2, 푞2 휔 푞2 For the linear velocity: 푥 풥11 풥12 푞1 푣 = 풥푣 푞 ⟺ = 푦 풥21 풥22 푞2 13.01.2018 J.Nassour 6 The Jacobian The elements of the Jacobian 풥푖푗 can be obtained by partial differentiation of the forward kinematic equations: 휔 푥 푞 풥11 풥12 1 푞1, 푞1 푣 = 푞2, 푞2 푦 풥21 풥22 푞2 푑푥 휕푥 푑푞 휕푥 푑푞 = 1 + 2 푑푡 휕푞1 푑푡 휕푞2 푑푡 푑푦 휕푦 푑푞 휕푦 푑푞 = 1 + 2 푑푡 휕푞1 푑푡 휕푞2 푑푡 13.01.2018 J.Nassour 7 The Jacobian The elements of the Jacobian 풥푖푗 can be obtained by partial differentiation of the forward kinematic equations: 휔 푥 푞 풥11 풥12 1 푞1, 푞1 푣 = 푞2, 푞2 푦 풥21 풥22 푞2 푑푥 휕푥 푑푞 휕푥 푑푞 = 1 + 2 푑푡 휕푞1 푑푡 휕푞2 푑푡 푑푦 휕푦 푑푞 휕푦 푑푞 = 1 + 2 푑푡 휕푞1 푑푡 휕푞2 푑푡 13.01.2018 J.Nassour 8 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 13.01.2018 J.Nassour 9 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 10 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 11 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 12 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 13 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 14 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 15 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 16 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 17 The Jacobian In this example the forward kinematics are given by: 푥 = 푞 cos(푞 ) 2 1 휔 푦 = 푞2 sin(푞1) 푞1, 푞1 푣 푞2, 푞2 Find the elements of the Jacobian 풥푖푗. 휕푥 휕푥 풥11 = = −푞2 sin(푞1) 풥12 = = 푐표푠(푞1) 휕푞1 휕푞2 휕푦 휕푦 풥21 = = 푞2 cos(푞1) 풥22 = = 푠푖푛(푞1) 휕푞1 휕푞2 This is the linear velocity Jacobian. 13.01.2018 J.Nassour 18 The Jacobian The angular velocity Jacobian: 푣 푞1 = 풥(푞1, 푞2) 휔 휔 푞 2 푞1, 푞1 푣 푞2, 푞2 For the angular velocity: 휔 = 풥휔푞 푞1 휔 = 풥1 풥2 푞2 In this example: 풥1 = 1 , 풥2 = 0 13.01.2018 J.Nassour 19 The Jacobian The angular velocity Jacobian: 푣 푞1 = 풥(푞1, 푞2) 휔 휔 푞 2 푞1, 푞1 푣 푞2, 푞2 For the angular velocity: 휔 = 풥휔푞 푞1 휔 = 풥1 풥2 푞2 In this example: 풥1 = 1 , 풥2 = 0 13.01.2018 J.Nassour 20 The Jacobian The angular velocity Jacobian: 푣 푞1 = 풥(푞1, 푞2) 휔 휔 푞 2 푞1, 푞1 푣 푞2, 푞2 For the angular velocity: 휔 = 풥휔푞 푞1 휔 = 풥1 풥2 푞2 In this example: 풥1 = 1 , 풥2 = 0 13.01.2018 J.Nassour 21 Full Manipulator Jacobian By combining the angular velocity Jacobian and the linear velocity Jacobian: 휔 푣 푞 1 푞1, 푞1 푣 = 풥(푞1, 푞2) 푞2, 푞2 휔 푞2 −푞 sin(푞 ) cos(푞 ) 푥 2 1 1 푞 = 1 푦 푞2 cos(푞1) sin(푞1) 푞 휔 1 0 2 The full Jacobian is an n×m matrix where n is the number of joints, and m is the number of variables describing motion. 13.01.2018 J.Nassour 22 Full Manipulator Jacobian Work out the linear and the angular velocities, with joint 2 extended to 0.5 m. The arm points in the x direction. Joint 1 is rotating at 2 rad/s and joint 2 is extending at 1 m/s. 휔 푞1, 푞1 푣 푞2, 푞2 −푞 sin(푞 ) cos(푞 ) 푥 2 1 1 푞 = 1 푦 푞2 cos(푞1) sin(푞1) 푞 휔 1 0 2 13.01.2018 J.Nassour 23 Full Manipulator Jacobian Work out the linear and the angular velocities, with joint 2 extended to 0.5 m. The arm points in the x direction. Joint 1 is rotating at 2 rad/s and joint 2 is extending at 1 m/s. 휔 푞1, 푞1 푣 푞2, 푞2 −푞 sin(푞 ) cos(푞 ) 푥 2 1 1 푞 = 1 푦 푞2 cos(푞1) sin(푞1) 푞 휔 1 0 2 푥 0 1 2 1 푦 = 0.5 0 = 1 1 휔 1 0 2 푥 =1 m/s ; 푦 =1 m/s ; 휔=2 rad/s 13.01.2018 J.Nassour 24 Inverting The Jacobian To determine the joint velocities for a given end effector velocity, we need to invert the Jacobian: 푣 = 풥 푞 푞 휔 푣 푞 = 풥−1 푞 휔 13.01.2018 J.Nassour 25 Inverting The Jacobian Find the joint velocities (푞1 , 푞2 ) in terms of the end effector velocity (푥 , 푦 ). 휔 푥 −푞2 sin(푞1) cos(푞1) 푞1 푞1, 푞1 푣 = 푞2, 푞2 푦 푞2 cos(푞1) sin(푞1) 푞2 푞 푥 1 = 풥−1 푞 푞2 푦 13.01.2018 J.Nassour 26 Inverting The Jacobian Find the joint velocities (푞1 , 푞2 ) in terms of the end effector velocity (푥 , 푦 ). 휔 −1 푞 , 푞 푞1 −푞2 sin(푞1) cos(푞1) 푥 1 1 푣 = 푞2, 푞2 푞2 푞2 cos(푞1) sin(푞1) 푦 푞 1 sin(푞 ) −cos(푞 ) 푥 1 = 1 1 푞2 −푞2 −푞2 cos(푞1) −푞2 sin(푞1) 푦 13.01.2018 J.Nassour 27 Inverting The Jacobian Find the joint velocities (푞1 , 푞2 ) in terms of the end effector velocity (푥 , 푦 ). 휔 −1 푞 , 푞 푞1 −푞2 sin(푞1) cos(푞1) 푥 1 1 푣 = 푞2, 푞2 푞2 푞2 cos(푞1) sin(푞1) 푦 푞 1 sin(푞 ) −cos(푞 ) 푥 1 = 1 1 푞2 −푞2 −푞2 cos(푞1) −푞2 sin(푞1) 푦 13.01.2018 J.Nassour 28 Inverting The Jacobian Find the joint velocities (푞1 , 푞2 ) in terms of the end effector velocity (푥 , 푦 ).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    108 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us