MTH 599 Foundations of Mathematical Thought

MTH 599 Foundations of Mathematical Thought

Ryerson Polytechnic University Foundations of Mathematical Thought MTH 599 Course Notes by P. Danziger c P. Danziger 1997, 1998, 2004 Contents 1 What is Mathematics? 8 1.1 A Definition of Mathematics? . 8 1.2 Mathematical Systems . 10 2 Early History 15 2.1 Pre-Hellenic Civilisations . 15 2.1.1 The Early Development of Mathematics . 16 2.1.2 Ancient Number Systems . 17 2.2 The Early Greeks . 22 2.3 Thales of Miletus . 24 2.3.1 Thales 1st Theorem . 25 2.3.2 Thales 2nd Theorem . 26 2.3.3 Thales 3rd Theorem . 28 2.3.4 Thales 4th Theorem . 30 2.4 Pythagoras and the Pythagoreans . 30 2.4.1 Pythagoras' Theorem . 30 2.4.2 The Pythagorean School . 33 2.4.3 The Golden Ratio . 34 1 2.4.4 Pythagoreans and Number Theory . 36 2.4.5 Figurate Numbers . 41 2.4.6 The Later Pythagoreans . 42 2.4.7 Irrational Numbers . 43 2.5 Zeno of Elea and his Paradoxes . 47 2.5.1 Zeno's Paradoxes . 47 2.5.2 Zeno's Paradoxes Explained . 49 3 The Athenians 52 3.1 Athens . 52 3.2 Hippocrates of Chios and Quadrature . 53 3.2.1 Quadrature . 54 3.2.2 The Method of Exhaustion . 57 3.2.3 The Three Great Problems of Antiquity . 59 3.3 The Athenian Philosophers . 60 3.3.1 Socrates . 60 3.3.2 The Sophists . 60 3.4 Plato . 61 3.4.1 The Platonic Ideal . 62 3.4.2 Plato's Academy . 64 3.5 Eudoxus of Cnidus . 65 3.5.1 Eudoxus' Definition of Ratio . 65 3.6 Aristotle . 68 3.6.1 Aristotelian Logic . 69 3.7 Euclid and Alexandria . 70 2 4 Euclid 71 4.1 Summary of the 13 Books of Euclid . 72 4.2 Euclid { Book I . 74 4.2.1 Definitions . 74 4.2.2 Postulates . 76 4.2.3 Common Notions . 76 4.3 Analysis of Euclid's Book I . 77 4.3.1 The Definitions . 77 4.3.2 The Postulates . 81 4.3.3 The Common Notions . 84 4.3.4 Propositions 1 - 4 . 85 4.3.5 The Other Propositions . 88 5 Euclid to the Renaissance 91 5.1 The Later Greek Period . 91 5.1.1 Apollonius of Perga . 91 5.1.2 Archimedes of Syracuse . 92 5.1.3 The Alexandrians . 94 5.1.4 Mathematics in the Roman World . 95 5.2 The Post Roman Period . 96 5.2.1 The Hindus . 96 5.2.2 The Arabic World . 97 5.2.3 Fibonacci . 98 5.3 The Renaissance . 100 5.4 Early Rationalism . 102 3 5.4.1 Descartes . 102 5.4.2 Fermat . 102 6 The Infinitesimal in Mathematics 104 6.1 The Development of Calculus . 104 6.1.1 Newton . 105 6.1.2 Leibniz . 105 6.1.3 English Mathematics . 106 6.1.4 The Bernoullis . 106 6.2 Limits and the Infinitesimal . 107 6.2.1 Integration . 107 6.2.2 Differentiation . 109 6.2.3 Limits . 109 7 The Modern Age 117 7.1 The Age of Rationalism . 117 7.1.1 Euler . 117 7.1.2 The French School . 119 7.1.3 Gauss . 120 7.2 Non Euclidean Geometry . 121 7.2.1 Riemann . 123 7.3 Cantor and the Infinite . 124 7.3.1 Cardinal vs. Ordinal Numbers . 124 7.3.2 Cantor . 125 8 Formal Logic 130 4 8.1 Statements . 131 8.2 Logical Operations . 133 8.2.1 NOT, AND, OR . 133 8.2.2 Implication . 137 8.2.3 Necessary and Sufficient . 140 8.3 Valid Forms . 140 8.4 Set Theory . 142 8.4.1 Basic Definitions . 142 8.4.2 Notation . 143 8.4.3 The Universal Set . 144 8.4.4 Some Useful Sets . 144 8.4.5 Set Comparisons . 145 8.4.6 Operations on Sets . 146 8.4.7 Set Identities . 147 8.5 Quantifiers . 149 8.5.1 Domain Change . 151 8.5.2 Negations of Quantified Statements . 152 8.5.3 Vacuosly True Universal Statements . 153 8.5.4 Multiply Quantified Statements . 153 8.5.5 Scope . 155 8.5.6 Variants of Universal Conditional Statements . 156 8.5.7 Necessary and Sufficient . 157 8.6 Methods of Proof . 158 8.6.1 Direct Methods . 159 8.6.2 Indirect Methods . 160 5 8.6.3 Induction . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    189 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us