FUSION ENERGY SCIENCE ADVISORY COMMITTEE Panel on High Energy Density Laboratory Plasmas ADVANCING THE SCIENCE OF HIGH ENERGY DENSITY LABORATORY PLASMAS January 2009 UNITED STATES DEPARTMENT OF ENERGY 1 TABLE OF CONTENTS EXECUTIVE SUMMARY.......................................................................................... 5 1 HIGH ENERGY DENSITY LABORATORY PLASMA SCIENCE .................................... 15 2 THE CHARGE TO FESAC ...................................................................................... 19 3 THE PANEL PROCESS ............................................................................................ 20 4 STEWARDSHIP OF THE JOINT PROGRAM ............................................................... 23 5 OVERVIEW OF THE HEDLP SCIENCE AREAS ........................................................ 25 6. U.S. HEDLP FACILITIES....................................................................................... 29 7 HEDLP SCIENCE APPLICATIONS TO INERTIAL FUSION ENERGY........................... 33 7.1 ALTERNATIVE CONCEPTS FOR IFE AND THE PATH TO HIGH ENERGY GAINS................................................................................... 35 7.1.1 High-gain direct-drive ................................................................. 38 7.1.2 Fast ignition................................................................................. 40 7.1.3 Shock ignition.............................................................................. 42 7.1.4 Heavy-ion fusion.......................................................................... 45 7.1.5 Z-pinch IFE .................................................................................. 47 7.1.6 Magneto-inertial fusion................................................................ 49 7.2 SIMILARITIES WITH THE MFE PROGRAM ...................................................... 51 8 HEDLP SCIENCE APPLICATIONS TO OTHER FIELDS ............................................. 53 8.1 APPLICATIONS TO ASTROPHYSICS ............................................................ 54 8.2 APPLICATIONS TO PLANETARY PHYSICS .................................................. 58 8.3 APPLICATIONS TO NUCLEAR PHYSICS ...................................................... 59 8.4 APPLICATIONS TO ACCELERATOR PHYSICS .............................................. 62 8.5 APPLICATIONS TO CONDENSED MATTER PHYSICS AND MATERIAL SCIENCE .......................................................................... 64 8.6 APPLICATIONS IN MEDICINE AND BIOLOGY .............................................. 65 8.7 APPLICATIONS IN ATOMIC-MOLECULAR-OPTICAL (AMO) SCIENCE ........ 67 9 ENERGY-RELATED HEDLP SCIENCE: ISSUES AND OPPORTUNITIES...................... 70 9.1 HEDLP SCIENCE ISSUES FOR INERTIAL FUSION ENERGY ............................ 71 9.1.1 Area: High Energy Density Hydrodynamics .............................. 72 9.1.2 Area: Nonlinear Optics of Plasmas and Laser–Plasma Interaction .................................................................................... 74 9.1.3 Area: Relativistic HED Plasma and Intense Beam Physics........ 76 9.1.4. Area: Magnetized High Energy Density Plasma Physics........... 81 9.1.5 Area: Radiation-Dominated Plasma Dynamics and Material Properties................................................................ 83 9.1.6 Area: Warm Dense Matter Physics............................................. 86 2 9.1.7 Area: Integrated HEDLP Physics ............................................... 86 9.2 SCIENTIFIC OPPORTUNITIES FOR RESEARCH WITHIN THE JOINT HEDLP PROGRAM–PRIORITIES.............................................................................. 92 10. FUNDAMENTAL HEDLP SCIENCE: AREAS, ISSUES, AND OPPORTUNITIES ............ 104 10.1 AREAS OF HEDLP SCIENCE: ASSESSMENT .............................................. 105 10.1.1 Area: High Energy Density Hydrodynamics .............................. 106 10.1.2 Area: Radiation-Dominated Dynamics and Material Properties................................................................ 109 10.1.3 Area: Magnetized High Energy Density Plasma Physics........... 111 10.1.4 Area: Nonlinear Optics of Plasmas and Laser–Plasma Interactions........................................................... 113 10.1.5 Area: Relativistic HED Plasma and Intense Beam Physics........ 115 10.1.6 Area: Warm Dense Matter Physics............................................. 117 10.2 SCIENTIFIC OPPORTUNITIES FOR RESEARCH WITHIN THE JOINT HEDLP PROGRAM ................................................................................................. 119 10.2.1 Area: High Energy Density Hydrodynamics .............................. 120 10.2.2 Area: Radiation-Dominated Dynamics and Material Properties................................................................ 123 10.2.3 Area: Magnetized High Energy Density Plasma Physics........... 126 10.2.4 Area: Nonlinear Optics and Plasmas and Laser–Plasma Interactions................................................................................... 129 10.2.5 Area: Relativistic HED Plasma and Intense-Beam Physics ....... 132 10.2.6 Area: Warm Dense Matter Physics............................................. 135 11 A SCIENTIFIC ROADMAP FOR ENERGY-RELATED HEDLP STUDIES...................... 138 11.1 USE OF EXISTING FACILITIES TO STUDY ENERGY-RELATED HEDLP SCIENCE ...................................................................................... 139 11.1.1 Investigating Specific HEDLP Science Issues on Existing Facilities.................................................................... 143 11.1.2 Using Existing Facilities to Field Integrated Implosion Experiments with Surrogate Targets............................................ 146 11.1.3 Ignition-Scalable Integrated-Implosion Experiments.................. 148 11.2 EXPLOITING NIF TO STUDY ENERGY-RELATED IGNITION SCIENCE .......... 150 11.3 TRANSITION TO AN ENERGY SCIENCE AND TECHNOLOGY DEVELOPMENT PROGRAM: REMAINING SCIENCE AND TECHNOLOGY ISSUES .................. 153 11.3.1 Benefits of Inertial Fusion Energy............................................... 155 11.3.2 Remaining Science and Technology Issues................................. 156 11.3.3 Past Progress in IFE Research ..................................................... 158 11.3.4 Rationale for an IFE Development Program ............................... 159 REFERERENCES.................................................................................................. 160 3 APPENDIX A: CHARGE TO FESAC .................................................................................. 170 APPENDIX B: FESAC HEDLP PANEL.......................................................................... 173 APPENDIX C: WORKSHOP ON SCIENTIFIC OPPORTUNITIES IN HIGH ENERGY DENSITY PLASMA PHYSICS...................................................................................... 175 APPENDIX D: SUBCOMMITTEE ON PLANNING FOR ENERGY-RELATED HEDLP STUDIES (PART 2 OF THE CHARGE) ........................................................................ 180 APPENDIX E: ACRONYMS ............................................................................................... 182 4 EXECUTIVE SUMMARY I. High Energy Density Laboratory Plasma Science The high energy density laboratory plasmas (HEDLP) that can be produced with state-of- the-art facilities are among the most scientifically interesting states of matter. Their densities and pressures can exceed those of the solar core, and their temperatures and flows can be high enough that relativistic effects become important. Understanding such states of matter will greatly expand the current knowledge in plasma physics and related areas. Particle acceleration by nonlinear waves, radiation-dominated plasmas, large self-generated magnetic fields, degenerate states of matter, strongly coupled plasmas, relativistic flows, and the interaction of intense particle and laser beams with matter are only some of the many fascinating and exciting physical phenomena that can be studied with present or soon to be completed high energy density facilities. High energy density plasmas have many important practical applications. Understanding the behavior of these plasmas is key to the development of inertial fusion energy, verification and validation experiments for national security science, compact particle accelerators, bright coherent x-ray sources, and intense particle beam sources for medical applications. It is critical that the Department of Energy (DOE) play the central role in the stewardship of this exciting field in order to ensure future scientific advances commensurate with its high degree of promise. The DOE Office of Fusion Energy Sciences (OFES) and the National Nuclear Security Administration (NNSA) are commended for establishing the Joint Program for HEDLP science to steward HEDLP science and to nurture new approaches to inertial fusion energy. Effective stewardship is essential to foster growth in this exciting field of science. This report is in response to the charge from the Department of Energy to the Fusion Energy Science Advisory Committee (FESAC) to “work with the HEDLP community to provide information” to develop “a scientific roadmap for the joint HEDLP program in the next decade.” High energy density laboratory plasma research can greatly benefit other fields of science in addition to being an exciting science on its own merits. Research in high energy density plasma physics has the potential to address fundamental science issues relevant
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages184 Page
-
File Size-