Unit 1 – an Introduction to Proof Through Euclidean Geometry Mga4u0 Unit 1 – an Introduction to Proof Through Euclidean Geometry

Unit 1 – an Introduction to Proof Through Euclidean Geometry Mga4u0 Unit 1 – an Introduction to Proof Through Euclidean Geometry

MGA4U0 UNIT 1 – AN INTRODUCTION TO PROOF THROUGH EUCLIDEAN GEOMETRY MGA4U0 UNIT 1 – AN INTRODUCTION TO PROOF THROUGH EUCLIDEAN GEOMETRY..............................................1 WHAT IS A PROOF? – INDUCTIVE AND DEDUCTIVE REASONING .......................................................................................4 NOLFI’S INTUITIVE DEFINITION OF “PROOF” .........................................................................................................................................4 PYTHAGOREAN THEOREM EXAMPLE .....................................................................................................................................................4 Proof: ...............................................................................................................................................................................................4 RESEARCH EXERCISES ...........................................................................................................................................................................4 THE MEANING OF Π – AN EXAMPLE OF DEDUCTIVE REASONING ..........................................................................................................5 Examples ..........................................................................................................................................................................................5 TIPS ON BECOMING A POWERFUL “PROVER”..........................................................................................................................................6 EXAMPLE OF INDUCTIVE REASONING (THE “CONJECTURE, TEST THE CONJECTURE, TRY TO PROVE” PROCESS) ..................................7 Conjecture........................................................................................................................................................................................7 Test the Conjecture...........................................................................................................................................................................7 EXAMPLE OF DEDUCTIVE REASONING – DEDUCTIVE PROOF OF THE CONJECTURE................................................................................7 Proof of Above Conjecture:..............................................................................................................................................................7 HOW TO DISTINGUISH BETWEEN A DEDUCTIVE ARGUMENT AND AN INDUCTIVE ARGUMENT ...............................................................7 Deductive Reasoning........................................................................................................................................................................7 Inductive Reasoning .........................................................................................................................................................................7 Examples of Deductive Reasoning from Everyday Life....................................................................................................................7 Examples of Inductive Reasoning from Everyday Life.....................................................................................................................7 Homework ........................................................................................................................................................................................7 AXIOMATIC SYSTEMS OF REASONING ........................................................................................................................................8 FOUNDATION OF AXIOMATIC SYSTEM OF REASONING – PRIMITIVE (UNDEFINED) TERMS AND AXIOMS ...............................................8 DEFINITIONS AND PROPOSITIONS IN AXIOMATIC SYSTEM OF REASONING.............................................................................................9 SUMMARY..............................................................................................................................................................................................9 EXERCISES .............................................................................................................................................................................................9 AN EXAMPLE OF DEDUCTIVE REASONING IN SCIENCE – EINSTEIN’S SPECIAL THEORY OF RELATIVITY (ENRICHMENT MATERIAL) ...10 Postulates (Axioms) of Special Relativity.......................................................................................................................................10 SOME IMPORTANT RESULTS DEDUCED FROM THE POSTULATES OF SPECIAL RELATIVITY ...................................................................10 A GRAND “THEOREM” THAT OVERTURNS ALL CURRENTLY ACCEPTED MATH?......................................................11 “THEOREM” .........................................................................................................................................................................................11 “Proof” ..........................................................................................................................................................................................11 PROOF IN EUCLIDEAN GEOMETRY.............................................................................................................................................12 WHAT IS EUCLIDEAN GEOMETRY? ......................................................................................................................................................12 GENERAL APPROACH TO LEARNING THEOREMS..................................................................................................................................13 GEOMETRY THEOREMS YOU MIGHT HAVE (OR SHOULD HAVE) LEARNED BEFORE TAKING THIS COURSE.............................................13 PROOF OF ASTT ..................................................................................................................................................................................15 PROOF OF ITT......................................................................................................................................................................................15 ALTERNATIVE PROOF OF ITT...............................................................................................................................................................15 PROOF OF OAT....................................................................................................................................................................................15 Homework ......................................................................................................................................................................................15 PROOF IN CARTESIAN GEOMETRY.............................................................................................................................................16 WHAT IS CARTESIAN GEOMETRY?.......................................................................................................................................................16 PROOF IN CARTESIAN GEOMETRY........................................................................................................................................................16 EXAMPLE 1 ..........................................................................................................................................................................................16 Proof...............................................................................................................................................................................................16 EXAMPLE 2 – A COROLLARY OF THE PYTHAGOREAN THEOREM..........................................................................................................16 Proof...............................................................................................................................................................................................16 EXAMPLE 3 ..........................................................................................................................................................................................16 Proof...............................................................................................................................................................................................16 HOMEWORK.........................................................................................................................................................................................17 CRITICAL PREREQUISITE KNOWLEDGE ................................................................................................................................................17 THE INTIMATE CONNECTION BETWEEN ALGEBRA AND GEOMETRY ...........................................................................18 INTRODUCTION ....................................................................................................................................................................................18 AN EXERCISE IN THE LANGUAGE OF MATHEMATICS ...........................................................................................................................18 Copyright ©, Nick E. Nolfi MGA4U0 An Introduction to Deductive Geometry and the Nature of Proof IPEG-1

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    47 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us