Fundamental Cosmology: 5.The Equation of State Fundamental

Fundamental Cosmology: 5.The Equation of State Fundamental

11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE FuFundndaammententaall CCoosmsmoolologygy:: 55..TheThe EquationEquation ofof StateState ““"P"Predictionrediction isis difficult,difficult, espespeciallyecially ththee futurefuture..””!!!!!! ——!!NielsNiels BohrBohr 1 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.1:1: TheThe EquatEquationion ofof StStatatee • The story so far Deriving the necessary components of The Einstein Field Equation 1 8pG ik • Spacetime and the Energy within it are symbiotic Gik = Rkl - gikR = 4 T 2 c • The Einstein equation describes this relationship 2 2 2 2 2 Ê dr 2 2 2 2 ˆ The Robertson-Walker Metric defines the dS = c dt - R (t)Á + r (dq + sin qdf )˜ Ë 1- kr2 ¯ geometry of the Universe † •• 4pGr Ê LRˆ R = - R Á + ˜ 3 Ë 3 ¯ † The Friedmann Equations describe • 2 the evolution of the Universe 2 8pGr 2 2 Ê LR ˆ R = R - kc Á + ˜ 3 Ë 3 ¯ † R˙ R˙ P e˙ + 3 (e + P) = 0 r˙ + 3 (r + ) = 0 Fluid R R c 2 Equation † 2 † † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.1:1: TheThe EquatEquationion ofof StStatatee • Want to study the evolution of our Universe - but • 2 independent equations but 3 unknowns • 2 ˙ 2 8pGr 2 2 Ê LR ˆ R P R = R - kc Á + ˜ r˙ + 3 (r + ) = 0 3 Ë 3 ¯ R c 2 •• 4pGr Ê LRˆ † R = - R Á + ˜ unknowns 3† Ë 3 ¯ • Scale factor, R(t) NOT INDEPENDENT !! • Pressure, P(t) • Density, r(t) † Need an equation of state Relate the Pressure, P(t) to the density, r(t) (or energy density e(t) ) P = P(r) 3 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.1:1: TheThe EquatEquationion ofof StStatatee • Consider the Universe as a perfect fluid • The Equation of State is given by; 2 2 P = wrc = we or w = P /rc = P /e w = dimensionless constant We will discover † ß Matter w ª 0 † ß Radiation w = 1/3 ß Cosmological Constant w = -1 ß (Incompressible Fluid w = -1) ß (Dark Energy w = -1/3) 4 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.1:1: TheThe EquatEquationion ofof StStatatee 2 • The evolution of the energy density of the universe E= mc r‹fie Total pressure is some of components 2 P = ÂPw = Âwrwc w w R˙ P R˙ † Fluid Equation r˙ + 3 (r + w ) = r˙ + 3 (1+ w)r = 0 w R w c 2 w R w dr dR fi w = -3(1+ w) † rw R rw dr R dR integrating w = -3(1+ w) Ú r Ú R r ow w Ro † -3(1+w ) Ê R ˆ Equation of State rw = row Á ˜ † Ë Ro ¯ 5 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 55..22:: TThhee EEqquuaattiioonn ooff StStaattee iinn GGRR • Einstein equations 本当にやりたいかな~~? •• • 2 2 1 S S + kc 8pG 1 8pG 2 8pG 3 2 + 2 = 2 T1 = 2 T2 = 2 T3 e - energy density S S 3c 3c 3c P - Pressure • 2 2 2 S + kc 8pG = T 0 S 2 3c 2 0 =-P ∂ 2 d(eR3) + 3PR2 = 0 3 dt dS = e k † actually implied by T i;k=0 Assume Dust: 3 Ê ˆ 3 Ê ˆ 3 • P = 0 d(rR ) Ro 0 2 Ro 1 3 = 0 fi r = roÁ ˜ fi T0 = r†oc Á ˜ , T1 = 0 • e = rc2 dS Ë R†¯ Ë R ¯ Result ! Assume Radiation: 4 1 d(rR4 ) Ê R ˆ 11 † 22 22 00 0 o T = T = T = e T = e 3 = fi r = roÁ ˜ 3 dS Ë R ¯ 6 † † † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 55..33:: TTyypespes ooff PresPresssuurere • MATTER (Dust) fi non-relativistic ideal gas r 1 Follows Ideal Gas Law PV = nRT = NkT fi P = kT m __ 1 2 Can derive from F=ma; PV = nM v 3 P = pressure V = volume † n = number of moles M = molar mass R = gas constant = 8.31J.mol-1K-1 2 † __ T = temperature __ 2 1 2 mv N = number of particles NkT = nM v fi kT = -1 k = Boltzman const. = 1.38e-23JK = NA k 1 2 3 3 -1 NA = Avagadros Number = 6.022e23mol r = density __ m= mean particle mass 2 P = wrc 2 v v = particle speed † w ª <<1 3c 2 7 † † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 55..22:: TTyypespes ooff PresPresssuurere • MATTER (Dust) fi non-relativistic ideal gas w = P /rc 2 ª 0 fi P = 0 -3(1+w ) Ê R ˆ rw = row Á ˜ † Ë Ro ¯ -3 rmatter µ R † 8 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 55..33:: TTyypespes ooff PresPresssuurere • RADIATION fi relativistic massless particles Photon number density energy spectrum Energy density distribution Intensity 8p E 2dE 8phc dl 4p 1 using ng (E)dE = 3 E / kT e(l)dl = e(l) = I(l) (hc) e -1 l5 ehc / lkT -1 c 1 2 Einsteinr E = p c 2 dpr F = ma = † † † dt e 1 2 Can derive (from ) P = pressure F P = = rc P = 3 3 E = energy A A = area n = number density of photons † m = particle mass † p = momentum T = temperature l = wavelength † k = Boltzman constant 2 1 h = planck constant P = wrc w = r = density 3 c = speed of light I = Intensity 9 † † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 55..33:: TTyypespes ooff PresPresssuurere • RADIATION fi relativistic massless particles 1 1 w = P /rc 2 ª fi P = rc 2 3 3 -3(1+w ) Ê R ˆ rw = ro Á ˜ w R † Ë o ¯ -4 rradiation µ R † 10 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 55..22:: TTyypespes ooff PresPresssuurere • COSMOLOGICAL CONSTANT COSMOLOGICAL CONSTANTって • A Bit of History •Einstein’s Universe : Matter and Radiation • no CMB so Ematter>>Eradiation => Pressure=0 • Galaxies still thought as nebula, i.e. Our Universe = Our Galaxy • Stars moving randomly (toward & away from us) => Universe neither expanding nor contracting • Universe is STATIC !! • But r>0, P~0 Universe must be either expanding or contracting Gravity Poisson equation for Gravitational Potential t 2 2 initially static universe will contract — F = 4pGr — F t initially expanding universe will Static -> a=0 r = = 0 (F=constant) 4 G • expand forever a = -—F p • reach maximum size then contract 2 For a static universe 4pGr = — F + L L = 4pGr = constant † † 11 † † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 55..33:: TTyypespes ooff PresPresssuurere • COSMOLOGICAL CONSTANT fi Vacuum Energy? L = 4pGr = constant fi r˙ = 0 P = -rc 2 R˙ P L Fluid r˙ + 3 (r + ) = 0 Equation R c 2 † 3(1 ) † Ê ˆ- +w 2 R w = P /rc = -1 rw = row Á ˜ † Ë Ro ¯ † R0 constant rL µ †= 12 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 55..33:: TTyypespes ooff PresPresssuurere -3(1+w ) • Summary Ê R ˆ rw = row Á ˜ Ë Ro ¯ -3 ß Matter w ª 0 rmatter µ R † -4 ß Radiation w = 1/3 rradiation µ R † ß 0 Cosmological Constant w = -1 rL µ R = constant † 13 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.4:4: DefinitDefinitionion ofof CosmologicalCosmological ParametParametersers • The Hubble Constant Ho The Hubble Parameter R˙ (from lecture 2.5) H(t) = where R = R(t) R Hubble Constant H0 = H(t0 ) H H =100h km s-1 Mpc-1 h = 0 † 0 100 Hubble Time t 0 ≡1/H0 9 -1 17 -1 t 0 = 9.8 ¥10 h yr = 3.09 ¥10 h s † Hubble Distance dH ≡ c /H0 d 3000h-1Mpc 9.26 1025 h-1m H = = ¥ 14 † † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.4:4: DefinitDefinitionion ofof CosmologicalCosmological ParametParametersers • The Density Parameter W 1 • • Friedmann 2 8pGr 2 2 2 2 R R kc /R2 R 8pGr kc 2 Equation (L=0) = - = - = H 3 R2 3 R2 2 3H THE CRITICAL DENSITY What’s this ? For a Flat Universe (k=0) r = r = c 8 G ~ 5x10-27kg m-3 † p † Define r 8pGr 2 THE DENSITY PARAMETER W = = 2 † rc 3H 2 • W>1 ˝ k>0 kc 2 W decides geometry 2 2 = W -1† • W<1 ˝ k<0 1 H R of the Universe !! • W=1˝ k=0 この話に後で戻る 15 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.4:4: DefinitDefinitionion ofof CosmologicalCosmological ParametParametersers • The Deceleration Parameter q Expand SCALE FACTOR R(t) as Taylor Series around the present time to R˙˙ R(t) = R(t ) + R˙ (t - t ) + (t - t )2 + ..... o to o 2 to o /R(to) q R(t) ª1 + H (t - t ) - o H 2 (t - t )2 What’s qo o o 2 o o † R˙ R˙ H = , H = o R to R q = THE DECCELERATION PARAMETER † R˙˙ R R˙˙ R o q = - , q = - o 2 to 2 H and q are mathmatical parameters (no physics!!) R˙ R˙ o o † q > 0 fi R˙˙ < 0 Universe is decelerating (relative velocity between 2 points is decreasing) † q < 0 fi R˙˙ > 0 Universe is accelerating (relative velocity between 2 points is increasing) † 16 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.4:4: DefinitDefinitionion ofof CosmologicalCosmological ParametParametersers • The Deceleration Parameter q 8pGr W = Acceleration Equation 3H 2 Friedmann Equation • •• 4pGr LR R˙ 2 2 R = - R + H = R 8pGr kc L R = - + 3 3 R2 3 R2 3 † R˙˙ R q = - R˙ 2 † † † L Ê W ˆ Ê 3W ˆ 2 2Ê 3W ˆ = H 2Á - q˜ † kc 2 = H 2R2Á - q -1˜ = H R Á o - q -1˜ 3 Ë 2 ¯ Ë 2 ¯ o o Ë 2 o ¯ H R k o o = • if L=0 ‡ W=2q 3W c o - q -1 † † 2 o • if k=0 ‡ 3W=2(q+1) 17 † 11/2/03 Chris Pearson : Fundamental Cosmology 5: The Equation of State ISAS -2003 THE EQUATION OF STATE 5.5.4:4: DefinitDefinitionion ofof CosmologicalCosmological ParametParametersers • The Cosmological Constant L Acceleration Equation Friedmann Equation • •• 4pGr LR R2 8pGr kc 2 L R = - R + = H 2 = - + 3 3 R2 3 R2 3 • acceleration equation, L opposite sign to G& r (gravity) 8pGr • Acts as “negative pressure” or “anti gravity” Wm = 2 † 3H • Accelerates the expansion of the Universe† (decelerate if L<0) Rewrite Friedmann eqn.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us