Notes for Lecture 2

Notes for Lecture 2

<p>Lecture 2 </p><p>1 Review </p><p>·<br>| | </p><p>1</p><p>·<br>| | </p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">}<sup style="top: -0.3301em;">∗ </sup>→ { </li><li style="flex:1">}</li></ul><p></p><p>∗</p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">}</li></ul><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">|</li><li style="flex:1">}</li></ul><p>∈</p><p>∈∈<br>⇒⇒</p><p></p><ul style="display: flex;"><li style="flex:1">• time </li><li style="flex:1">∈ time </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">·</li><li style="flex:1">·</li><li style="flex:1">| | </li></ul><p></p><p>• space </p><p><sup style="top: -0.3168em;">1</sup>Note that we do not count the space used on the input or output tapes; this allows us to meaningfully speak of sub-linear space machines (with linear- or superlinear-length output). </p><p>2</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">∈ time </li><li style="flex:1">space </li><li style="flex:1">space </li></ul><p></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">time </li><li style="flex:1">⊆ space </li></ul><p></p><p>2 P, NP, and NP-Completeness </p><p>2.1 The&nbsp;Class P </p><p>P</p><p>def </p><p>P</p><p>time </p><p>≥1 </p><p>P<br>| | <br>P</p><p>•</p><p>•</p><p>100 <br>100 8</p><p>P<br>P</p><p><sup style="top: -0.3176em;">2</sup>This decision is also motivated by “speedup theorems” which state that if a language can be decided in time <br>(resp., space)&nbsp;( )&nbsp;then it can be decided in time (resp., space)&nbsp;( )&nbsp;for any constant&nbsp;. (This assumes that&nbsp;( ) is a “reasonable” function, but the details need not concern us here.) </p><p>P</p><p>2.2 The&nbsp;Classes NP and coNP </p><p></p><ul style="display: flex;"><li style="flex:1">NP </li><li style="flex:1">NP </li></ul><p>∈ NP </p><p>3</p><p></p><ul style="display: flex;"><li style="flex:1">| | </li><li style="flex:1">∈</li></ul><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">P</li><li style="flex:1">∈ P </li></ul><p>| | <br>∈<br>P<br>NP </p><p>∈<br>P<br>NP </p><p>NP <br>P ⊆ NP ⊆&nbsp;<sub style="top: 0.2684em;">≥1 </sub>time </p><ul style="display: flex;"><li style="flex:1">P ⊆ NP </li><li style="flex:1">∈ NP </li></ul><p>| | </p><ul style="display: flex;"><li style="flex:1">| | </li><li style="flex:1">∈</li></ul><p>| | <br>| | </p><p><sup style="top: -0.3176em;">3</sup>It is essential that the running time of is to require the length of&nbsp;to be at most&nbsp;(| |) in condition (2). be measured in terms of the length of&nbsp;alone. An alternate approach </p><p>≤ (| |) </p><p></p><ul style="display: flex;"><li style="flex:1">∈ { </li><li style="flex:1">}</li></ul><p></p><p>(| |) </p><p>| | · </p><p>∈ time </p><p>NP </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">⇔</li></ul><p>| | </p><p>ntime <br>∈ ntime </p><p>| | <br>| | </p><p>nspace </p><p>| | </p><ul style="display: flex;"><li style="flex:1">NP </li><li style="flex:1">P</li></ul><p>NP </p><p><sub style="top: 0.2692em;">≥1 </sub>ntime </p><p>?</p><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">NP </li></ul><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">NP </li></ul><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">NP </li></ul><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">NP </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ntime </li><li style="flex:1">time </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">3</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">time </li><li style="flex:1">⊆ ntime </li></ul><p></p><p>coNP </p><p></p><ul style="display: flex;"><li style="flex:1">def </li><li style="flex:1">def </li></ul><p></p><p>C</p><p></p><ul style="display: flex;"><li style="flex:1">coC </li><li style="flex:1">coC </li></ul><p></p><p>NP </p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">∈ C </li><li style="flex:1">{</li><li style="flex:1">}<sup style="top: -0.3301em;">∗ </sup>\ </li></ul><p>coNP <br>∈ coNP </p><p>4</p><p></p><ul style="display: flex;"><li style="flex:1">| | </li><li style="flex:1">∈</li></ul><p></p><p><sup style="top: -0.3176em;">4</sup>See footnote 3. </p><p>∈</p><ul style="display: flex;"><li style="flex:1">coNP </li><li style="flex:1">NP </li></ul><p></p><ul style="display: flex;"><li style="flex:1">coNP </li><li style="flex:1">∈</li></ul><p></p><ul style="display: flex;"><li style="flex:1">NP </li><li style="flex:1">coNP </li></ul><p></p><p>SAT { | </p><p>}</p><p>SAT <br>SAT ∈ coNP </p><p>SAT ∈ NP </p><p>TAUT <br>TAUT </p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">}</li></ul><p></p><p>TAUT </p><p>coNP coNP </p><p></p><ul style="display: flex;"><li style="flex:1">P ⊆ NP ∩ coNP </li><li style="flex:1">NP </li><li style="flex:1">coNP </li></ul><p>SAT ∈ NP <br>NP coNP </p><p>2.3 NP-Completeness </p><p>NP </p><p>0</p><p>5</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">Karp reducible </li><li style="flex:1">many-to-one reducible </li></ul><p></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">∈</li></ul><p></p><p>0</p><p>≤</p><p><sup style="top: -0.3176em;">5</sup>Technically speaking, I mean “at least as hard as”. </p><p>0</p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>def </p><p>0<br>0</p><p>≤</p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">≤</li><li style="flex:1">≤</li></ul><p>≤≤</p><ul style="display: flex;"><li style="flex:1">∈ P </li><li style="flex:1">∈ P </li></ul><p></p><ul style="display: flex;"><li style="flex:1">∈ NP </li><li style="flex:1">∈ NP </li></ul><p>NP NP </p><ul style="display: flex;"><li style="flex:1">NP </li><li style="flex:1">NP </li></ul><p>NP </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>NP-hard </p><p>∈ NP <br>NP <br>≤</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>NP-complete </p><p></p><ul style="display: flex;"><li style="flex:1">∈ NP </li><li style="flex:1">NP </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">NP </li><li style="flex:1">≤</li></ul><p></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">coNP </li><li style="flex:1">coNP </li></ul><p>coNP <br>∈ coNP </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">coNP </li><li style="flex:1">∈ coNP </li></ul><p>NP <br>NP <br>NP NP <br>NP <br>NP </p><p></p><ul style="display: flex;"><li style="flex:1">∃</li><li style="flex:1">∈ { </li><li style="flex:1">}</li></ul><p>NP </p><p>References </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us