Plane Geometry Pg. 1

Plane Geometry Pg. 1

Plane Geometry Classification of triangles: • Scalene: No two sides are equal in length B • Isosceles: two sides are equal in length • Equilateral: all three sides are equal in length c a • Right: one angle is 90° Pythagorean Theorem: ͦ ͦ ͦ Solving for a variable Geometric͕ + Formulas: ͖ = ͗ A b C • Triangle: Perimeter P = a + b + c, Area A = ½ bh ; Hero’s formula for area of triangle: where ͥ ̻ = ǭͧʚͧ − ͕ʛʚͧ − ͖ʛʚͧ − ͗ʛ ͧ = ͦ ʚ͕ + ͖ + ͗ʛ • Trapezoid: Area A = ½ h(b1 + b2) • Parallelogram: Area A = bh • Rectangle: Area A = LW ; Perimeter P = 2 L + 2 W • Square (Special case of a rectangle): Apply formulae for rectangle • Circle: Diameter d = 2 r, Area A = πr2; Perimeter (Circumference) C = 2 πr or πd; Arc length Example Find the circumference and area of the circle with radius 10 m. ͧ = ͦ Solution: Circumference Area = 2ͦ = 2ʚ10 mʛ = ̋̉ú ̭ ͦ ͦ ͦ ̋ = ͦ = ʚ10 mʛ = ʚ100 m ʛ = ̊̉̉ú ̭ pg. 1 Plane Geometry Angles and Parallel Lines • The sum of the three interior angles of a triangle is equal to 180°. • The sum of any two interior angles of a triangle equals the exterior angle at the remaining vertex: A ∠̼̻̽ + ∠̻̼̽ = ∠̻̽̾ B C D • Vertically opposite angles are equal (abbreviated as “vert. opp. ∠ s”) γ β α δ ∠ = ∠ , ∠ = ∠ Example Find the values of x and y. y° Solution: 30 ° x y = 110 (vert. opp. ∠s) ° 110 ° 30 ° + y ° + x ° = 180 ° (adj. ∠s on a st. line) 30 ° + 110 ° + x ° = 180 ° 140 ° + x ° = 180 ° x° = 180 ° - 140 ° x = 40 pg. 2 Plane Geometry • Two distinct lines are parallel (to each other) if they do not intersect (even if they are extended indefinitely at both ends). • A transversal of two distinct lines AB and CD is a third line that cuts both AB and CD. E A B C D F & • We have four pair of corresponding angles : ∠α and ∠ν, ∠β and ∠µ, ∠γ and ∠φ, ∠δ and ∠θ. • The angles ∠α, ∠β, ∠γ and ∠δ are called interior angles ; the angles ∠θ, ∠φ, ∠µ and ∠ν are the exterior angles . • ∠β and ∠δ are alternate interior angles (and so are ∠α and ∠γ); ∠φ and ∠ν are alternate exterior angles (and so are ∠ θ and ∠µ). • Two distinct lines AB and CD are parallel if (and only if) any of the following conditions is satisfied: o Interior angles on the same side of the transversal are supplementary; that is, they add up to 180 ° (abbreviated as “int. ∠ s of // lines”): ° ° o Any one of the four pairs∠ of + corresponding ∠ = 180 , angles ∠ + ∠ are =equal 180 (abbreviated as “corr. ∠ s of // lines”): o Any one of the∠ =∠, two pairs of alternate ∠ =∠, interior ∠ =∠&, angles is equal ͣͦ (abbreviated ∠ =∠ as “alt. int. ∠ s of // lines”): ∠ = ∠ ͣͦ ∠ = ∠ pg. 3 Plane Geometry Example F In the figure, AB // CD and CF, AE meet at the point G. B D x E Find ∠x. G 40 ° 30 ° A C Solution: F Draw a straight line GN parallel to AB and CD through G. B x1 x D 2E Let ∠EGN = ∠x, so that ∠x = ∠x1 + ∠x2 G Now ∠x1 = 30º (corr. ∠ s of // lines GN and CD) 40 ° 30 ° and ∠x2 = 40º (corr. ∠ s of // lines GN and AB) A C Thus ∠x = ∠x1 + ∠x2 = 30º + 40º = 70º Example Find the values of x and y in the figure. Solution: xº y = 63 (alt. int. ∠ s of // lines) yº x = 180 - y (adj. ∠s on a st. line) 63º = 180 - 63 = 117 Example Find the values of x and z in the figure. Solution: xº z + 63 = 180 (int. ∠ s of // lines) zº z = 180 - 63= 117 63º x = z (vert. opp. ∠s) = 117 pg. 4 Plane Geometry Exercises Find the unknown angles marked. y° x 50 ° x° 290 ° y 40 ° 120 ° z [Answers: ] [Answers: ° ° °] ͬ = 30 , ͭ = 110 ͬ = 60 , ͭ = 130 , ͮ = 50 47 ° 30 ° 35 ° 61 ° z x 52 ° x y [Answer: °] [Answers: ° ° °] ͬ = 20 ͬ = 35 , ͭ = 30 , ͮ = 115 60 ° x° y° z° [Answers: ] Ex ͬ = 60 , ͭ = 60 . ͮ = 120 pg. 5 Plane Geometry Similar Triangles R C A B P Q ∆ABC is similar to ∆PQR, denoted by ∆ABC ~ ∆PQR, if (and only if) any of the following conditions is satisfied: • The three angles of one triangle are equal to the three angles of the other respectively (abbreviated as AAA): • The ratio of one side of one triangle∠̻ =∠͊,∠̼ to one =∠͋,∠̽side of the =∠͌other triangle is equal to the ratio of another pair of sides of the two triangles, and the included angles of these sides in the triangles are equal (abbreviated as SAS): for instance, ̻̼ ̻̽ = and ∠̻ = ∠͊ • The ratios of the sides of the two͊͋ triangle͊͌ are the same for all three sides (abbreviated as SSS): ̻̼ ̻̽ ̼̽ = = Example Find all similar triangles in the figure.͊͋ ͊͌ ͋͌ A Solution: ∠ACB = ∠AED = 75 ° Hence BC // DE (converse of corr. ∠s of // lines) 75 ° B C Moreover, ∠ABC = ∠ADE (corr. ∠s of // lines) 75 ° ∴ ∆ABC ∼∼∼ ∆ADE D E pg. 6 Plane Geometry Example Find all similar triangles are there C in the figure. D Solution: Note ∠ADC = ∠BDA = ∠BAC = 90 ° ∠DCA = ∠DAB = ∠ACB A B ∠CAD = ∠ABD = ∠CBA Hence ∆DCA ∼∼∼ ∆DAB ∼∼∼ ∆ACB Example Find y and z. A Solution: By the Pythagorean theorem, 12 5 z y ͦ ͦ ͦ ̼̽ = ̻̽ + ̻̼ B D C ͦ ⟹ʚͭ + ͮʛ = 25 + 144 From⟹ ͭthe+ ͮprevious= √169 example,= 13 ∆DAB ∼ ∆ACB Hence 5 ͥͦ ͥͦ×ͥͦ ̊̍̍ = ⟹ ͥͦ = 4ͮ5 ⟹ ͮ = ͥͧ = ̊̌ ͥͨͨ ̋̎ ͭ+ͮ=13 ⟹ͭ=13− ͥͧ = ̊̌ Example Find EC. A Solution: Since DE // BC, we have 21 28 ∠ E ∠̻̾̿ = ∠̻̼̽ Ƴcorr. ∠ s of // lines DEand BCƷ Ʀ∠̻̿̾ = ∠̻̼̽ Ƴcorr. s of // lines DEand BCƷ D C Hence∠̻̾̿ = ∠̼̻̽ ʚSame angle ʛ 8 B AB ∆̻̾̿~∆̻̼̽AC AD + ʚDBAAA ʛ AE + EC = ⇒ = AD AE AD AE DB EC 8 EC ⇒ 1+ =1+ ⇒ = AD AE 28 21 8 × 21 ∴ EC = = 6 28 pg. 7 Plane Geometry Exercises If DE = 32, find the length of BC. Find x and y. C 50 9 8 y E 60 6 15 A 24 D 20 B x [Answer: ] ͥͫͪ ̼̽ = ͧ [Answers: ] ͨͤ Find x. Find x. ͬ = ͧ , ͭ = 10 x 36 9 12 [Answer: ] ͬ = 18 x 4 6 [Answer: ] ͬ = 2 pg. 8 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us