MAFB Determines Human Macrophage Anti-Inflammatory

MAFB Determines Human Macrophage Anti-Inflammatory

MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis This information is current as of September 26, 2021. Víctor D. Cuevas, Laura Anta, Rafael Samaniego, Emmanuel Orta-Zavalza, Juan Vladimir de la Rosa, Geneviève Baujat, Ángeles Domínguez-Soto, Paloma Sánchez-Mateos, María M. Escribese, Antonio Castrillo, Valérie Cormier-Daire, Miguel A. Vega and Ángel L. Corbí Downloaded from J Immunol published online 16 January 2017 http://www.jimmunol.org/content/early/2017/01/15/jimmun ol.1601667 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/01/15/jimmunol.160166 Material 7.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 16, 2017, doi:10.4049/jimmunol.1601667 The Journal of Immunology MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis Vı´ctor D. Cuevas,* Laura Anta,† Rafael Samaniego,‡ Emmanuel Orta-Zavalza,* Juan Vladimir de la Rosa,x Genevie`ve Baujat,{,‖ A´ ngeles Domı´nguez-Soto,* Paloma Sa´nchez-Mateos,‡ Marı´a M. Escribese,# Antonio Castrillo,x Vale´rie Cormier-Daire,{,‖ Miguel A. Vega,* and A´ ngel L. Corbı´* Macrophage phenotypic and functional heterogeneity derives from tissue-specific transcriptional signatures shaped by the local micro- environment. Most studies addressing the molecular basis for macrophage heterogeneity have focused on murine cells, whereas the factors Downloaded from controlling the functional specialization of human macrophages are less known. M-CSF drives the generation of human monocyte-derived macrophages with a potent anti-inflammatory activity upon stimulation. We now report that knockdown of MAFB impairs the acquisition of the anti-inflammatory profile of human macrophages, identify the MAFB-dependent gene signature in human macrophages and il- lustrate the coexpression of MAFB and MAFB-target genes in CD163+ tissue-resident and tumor-associated macrophages. The con- tribution of MAFB to the homeostatic/anti-inflammatory macrophage profile is further supported by the skewed polarization of monocyte-derived macrophages from multicentric carpotarsal osteolysis (Online Mendelian Inheritance in Man #166300), a pathology http://www.jimmunol.org/ caused by mutations in the MAFB gene. Our results demonstrate that MAFB critically determines the acquisition of the anti- inflammatory transcriptional and functional profiles of human macrophages. The Journal of Immunology, 2017, 198: 000–000. acrophage heterogeneity derives from the existence of bition of tumor cell growth and production of LPS-induced cy- tissue-specific factors that control macrophage differ- tokines (7, 14). Specifically, GM-CSF primes macrophages M entiation and functional maturation. M-CSF and IL-34 (GM-MØ) to gain immunogenic activity and to produce inflam- control macrophage differentiation in most tissues (1, 2), whereas matory cytokines upon TLR stimulation, whereas M-CSF primes GM-CSF drives the generation of alveolar macrophages (3). Cir- macrophages (M-MØ) with tissue repair and proangiogenic culating monocytes are recruited to damaged tissues under in- functions, and with potent TLR-induced IL-10–producing ability by guest on September 26, 2021 flammatory conditions (4) and acquire specialized functions (7, 15). Accordingly, human GM-MØ and M-MØ are considered (macrophage polarization) under the influence of extracellular as proinflammatory and anti-inflammatory macrophages (6, 16). cues (5). The macrophage sensitivity to the surrounding milieu is MAFB is a transcription factor of the large MAF subfamily exemplified by the ability of GM-CSF and M-CSF to induce the (MAFA, cMAF, MAFB, NRL) that binds to a specific DNA acquisition of distinct effector functions (6, 7). Previous studies element (MARE); heterodimerizes with cMAF, JUN, and FOS have demonstrated that GM-CSF–primed macrophages (GM-MØ) (17–19); and associates and functionally inhibits MYB (19), and M-CSF–primed macrophages (M-MØ) exhibit distinct cellu- MITF, and NFATc1 (20). MAFB controls lens development (21), lar phenotypes (8–11), a distinct metabolic state (12, 13), and lymphangiogenesis (22), pancreatic a and b cell differentiation (23, display opposite effector functions like activin A–mediated inhi- 24), skin cell differentiation (25), chondrocyte matrix formation and *Laboratorio de Ce´lulas Mieloides, Centro de Investigaciones Biolo´gicas, Consejo Grant S2010/BMD-2350 (to A´ .L.C. and A.C.), and a Formacio´ndePersonalInves- Superior de Investigaciones Cientı´ficas, 28040 Madrid, Spain; †Servicio de Cirugı´a tigador predoctoral fellowship from MINECO through Grant BES-2012-053864 Ortope´dica y Traumatologı´a, Complejo Hospitalario de Santiago de Compostela, (to V.D.C.). 15706 Santiago de Compostela, Spain; ‡Laboratorio de Inmuno-Oncologı´a, Unidad V.D.C., L.A., M.M.E., A.C., M.A.V., and A´ .L.C. designed the research; V.D.C., L.A., de Microscopı´a Confocal, Instituto de Investigacio´n Sanitaria Gregorio Maran˜o´n, x R.S., E.O.-Z., J.V.d.l.R., G.B., A´ .D.-S., P.S.-M., and V.C.-D. performed experiments, 28007 Madrid, Spain; Instituto de Investigaciones Biomedicas Alberto Sols, Consejo { recruited patients, and analyzed data; V.D.C. and A´ .L.C. wrote the manuscript. Superior de Investigaciones Cientı´ficas, 28029 Madrid, Spain; Unidad de Biomedi- cina, Instituto de Investigaciones Biome´dicas–Universidad de Las Palmas de Gran The sequences presented in this article have been submitted to Gene Expression Canaria (ULPGC), Instituto Universitario de Investigaciones Biomedicas y Sanitarias Omnibus under accession number GSE84622. de la ULPGC, 35001 Las Palmas, Spain; ‖De´partement de Ge´ne´tique, INSERM Address correspondence and reprint requests to Dr. A´ ngel L. Corbı´ and Dr. Miguel A. U781, Universite´ Paris Descartes-Sorbonne Paris Cite´, Institut Imagine, Hoˆpital Vega, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Necker Enfants Malades, 75015 Paris, France; and #Institute for Applied Molecular Cientı´ficas, Calle Ramiro de Maeztu 9, 28040 Madrid, Spain. E-mail addresses: Medicine, School of Medicine, University CEU San Pablo, Madrid, Spain [email protected] (A´ .L.C.) and [email protected] (M.A.V.) ORCIDs: 0000-0002-2816-8070 (V.D.C.); 0000-0002-4196-5218 (L.A.); 0000-0002- The online version of this article contains supplemental material. 3081-7332 (R.S.); 0000-0003-1443-7548 (J.V.d.l.R.); 0000-0003-1980-5733 (A´ .L.C.). Abbreviations used in this article: GM-MØ, GM-CSF–primed macrophages; GSEA, Received for publication September 26, 2016. Accepted for publication December gene set enrichment analysis; MARE, MAF recognition element; MCTO, multicen- 16, 2016. tric carpotarsal osteolysis; M-MØ, M-CSF–primed macrophages; RANKL, receptor This work was supported by Ministerio de Economı´a y Competitividad (MINECO) activator for NF-kB ligand; siControl, small interfering RNA control; siMAFB, Grant SAF2014-52423-R and Instituto de Salud Carlos III Red de Investigacio´n MAFB-specific small interfering RNA; TRAP, tartrate-resistant acid phosphatase. en Enfermedades Reuma´ticas Grant RIER RD12/009 (to A´ .L.C. and M.A.V.), MINECO Grant SAF2014-56819-R (to A.C.), Comunidad Auto´noma de Madrid/ Copyright Ó 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$30.00 Fonds Europe´en de De´veloppement E´ conomique et Re´gional RAPHYME Program www.jimmunol.org/cgi/doi/10.4049/jimmunol.1601667 2 MAFB-DIRECTED MACROPHAGE ANTI-INFLAMMATORY POLARIZATION development (26), and podocyte generation (27–30), and also reg- that were provided by M. Palomero (Oncology Department, Hospital Gen- ulates type I IFN production through recruitment of coactivators to eral Universitario Gregorio Maran˜o´n). Macrophage supernatants were IFN regulatory factor 3 (31). Within the murine myeloid lineage, assayed for the presence of cytokines using commercial ELISA kits for CCL2 (BD Biosciences) and IL-10 (BioLegend), according to the proto- MafB is preferentially expressed in most tissue-resident macro- cols supplied by the manufacturers. Mouse bone marrow–derived macro- phages, whose specific enhancers contain an overrepresentation of phages were generated using human M-CSF (10 ng/ml; ImmunoTools). All MARE sequences (32). MAFB restricts the ability of M-CSF to animal procedures were approved by the Comite´ E´ tico de Experimentacio´n instruct myeloid cell proliferation, promotes macrophage differen- Animal (Ethical Committee for Animal Experimentation) of the Consejo Superior de Investigaciones Cientı´ficas and conducted in accordance with tiation (33) through repression of self-renewal

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us