Algebraic Subtyping Stephen Dolan University of Cambridge Computer Laboratory Trinity College September 2016 This dissertation is submitted for the degree of Doctor of Philosophy Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. Neither it nor any substantial part has already been submitted nor is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other institution. This dissertation does not exceed the regulation length of 60,000 words, including tables and footnotes. Algebraic Subtyping Stephen Dolan Summary Type inference gives programmers the benefit of static, compile-time type checking without the cost of manually speci- fying types, and has long been a standard feature of functional programming languages. However, it has proven difficult to inte- grate type inference with subtyping, since the unification engine at the core of classical type inference accepts only equations, not subtyping constraints. This thesis presents a type system combining ML-style para- metric polymorphism and subtyping, with type inference, prin- cipal types, and decidable type subsumption. Type inference is based on biunification, an analogue of unification that works with subtyping constraints. Making this possible are several contributions, beginning with the notion of an “extensible” type system, in which an open world of types is assumed, so that no typeable program becomes untypeable by the addition of new types to the language. While previous formulations of subtyping fail to be extensible, this the- sis shows that adopting a more algebraic approach can remedy this. Using such an approach, this thesis develops the theory of biunification, shows how it is used to infer types, and shows how it can be efficiently implemented, exploiting deep connec- tions between the algebra of regular languages and polymorphic subtyping. Acknowledgements First, I thank my supervisor Alan Mycroft, for his valuable advice, gentle guidance, and general willingness to engage in deep technical conversation about every bizarre tangent I wandered off along. I am grateful for many conversations with Leo White, which improved both the ideas in this thesis and their presentation. I also thank Daan Leijen for helpful comments and vital encouragement, and all of the denizens of the Computer Lab in Cambridge who provided such a stimulating atmosphere, particularly my office-mate Raphaël Proust. I thank Trinity College and OCaml Labs for funding this work. Especially, I thank Louise, for her unflagging love, support and compan- ionship, which got me through darker times and made brighter ones that much brighter. Contents 1 Introduction 9 1.1 Types and data flow .......................... 9 1.2 Contributions .............................. 10 1.3 Design principles for subtyping .................... 11 1.3.1 Extensibility .......................... 11 1.3.2 Algebra before syntax ..................... 12 1.4 Failures of extensibility ......................... 12 1.4.1 Vacuous reasoning ....................... 13 1.4.2 Closed-world polymorphism and free algebras ........ 14 1.5 Structure of the thesis ......................... 15 2 Background 17 2.1 Order theory .............................. 18 2.1.1 Lattices ............................. 18 2.1.2 Lattices and subtyping ..................... 19 2.1.3 Suborders versus sublattices .................. 19 2.1.4 Distributive lattices ...................... 20 2.1.5 Distributivity and subtyping .................. 21 2.1.6 Recursive types and subtyping ................ 22 2.1.7 Fixed, pre-fixed and post-fixed points ............ 23 2.1.8 Other fixed point results and Bekič’s construction ..... 25 2.2 Semirings and Kleene algebra ..................... 26 2.2.1 Axiomatising the regular languages .............. 27 2.2.2 Kleene algebra via pre-fixed points .............. 28 2.2.3 Complete and *-continuous Kleene algebras ......... 29 2.3 Category theory ............................. 29 2.3.1 Categories of orders ...................... 30 2.3.2 Concrete categories and free objects ............. 31 2.3.3 Aside: orders versus categories for subtyping ........ 32 3 Constructing types 33 3.1 Simple types .............................. 35 3.1.1 Algebras, initial and otherwise ................ 35 3.1.2 Subtyping ............................ 36 3.1.3 Least and greatest types .................... 37 3.2 A (distributive) lattice of types .................... 38 3.2.1 Syntactic construction ..................... 39 3.2.2 Comparing the lattices ..................... 40 3.2.3 Components and coproducts ................. 41 3.3 Type variables .............................. 42 3.3.1 Open versus closed-world type variables ........... 43 3.3.2 Constructing free algebras ................... 43 6 CONTENTS 3.3.3 Properties of substitutions ................... 44 3.4 Recursive types ............................. 45 3.4.1 Completion via coalgebra ................... 46 3.4.2 Completion via metrics .................... 48 3.4.3 Completion via orders ..................... 49 3.5 Summary ................................ 52 4 The type system 55 4.1 Properties of the type system ..................... 57 4.1.1 Instantiation .......................... 57 4.1.2 Weakening ........................... 58 4.1.3 Substitution .......................... 60 4.1.4 Soundness ........................... 60 4.2 Typing schemes and subsumption ................... 63 4.2.1 Equivalence of typing schemes ................ 65 4.3 Reformulated typing rules ....................... 66 4.3.1 Example of generalisation ................... 67 4.3.2 Equivalence of original and reformulated rules ........ 68 5 Polarity and biunification 71 5.1 Polar types ............................... 72 5.1.1 Recursive types ......................... 73 5.1.2 Polar typing schemes ..................... 75 5.2 Unification and subtyping ....................... 75 5.2.1 Bisubstitutions ......................... 76 5.2.2 Parameterisation and typing .................. 78 5.2.3 The instances of a typing scheme ............... 79 5.2.4 Comparison with unification .................. 80 5.3 Solving constraints with bisubstitutions ................ 81 5.3.1 Atomic constraints ....................... 81 5.3.2 Decomposing constraints ................... 82 5.3.3 The biunification algorithm .................. 83 5.4 Correctness of biunification ...................... 84 5.4.1 Stability and idempotence ................... 84 5.4.2 Solving atomic constraints .................. 86 5.4.3 Solving multiple constraints .................. 87 5.4.4 Stability of biunification .................... 88 5.4.5 Biunification of unsatisfiable constraints ........... 89 5.4.6 Atomic subconstraints suffice ................. 89 5.4.7 Biunification of satisfiable constraints ............ 91 6 Principal type inference 93 6.1 Principality ............................... 93 6.1.1 Example ............................ 94 6.2 Principal type inference ........................ 95 6.2.1 Principality for functions ................... 96 6.2.2 Principality for booleans and records ............. 98 6.2.3 Principality for let-bindings .................. 99 6.3 Summary of the algorithm ....................... 99 7 Representation of types 101 7.1 Type automata ............................. 102 CONTENTS 7 7.1.1 Head constructors ....................... 103 7.1.2 Constructing type automata .................. 103 7.1.3 Deconstructing automata ................... 104 7.2 Simplifying type automata ....................... 105 7.2.1 Encoding types as regular languages ............. 105 7.2.2 Undoing the encoding ..................... 109 7.2.3 Simplifying types as languages ................ 111 7.3 Simplifying typing schemes ...................... 113 7.3.1 Scheme automata ....................... 114 7.3.2 Simplifying scheme automata ................. 115 7.3.3 Converting scheme automata to type automata ....... 116 7.4 Biunification of automata ....................... 118 7.4.1 Termination and complexity .................. 118 8 Deciding subsumption 121 8.1 Deciding the example ......................... 121 8.2 Deciding complex subtyping ...................... 122 8.2.1 Reduced form and deterministic automata .......... 123 8.3 Subsumption algorithm ......................... 124 8.4 Deciding admissability of flow edges ................. 125 8.5 Summary ................................ 126 9 Extensions 129 9.1 User-defined types ........................... 129 9.1.1 Variance and mutability .................... 130 9.1.2 Type parameter notation ................... 131 9.2 Sum types ................................ 132 9.2.1 Tagged records ......................... 133 9.2.2 Row and presence variables .................. 134 9.3 Complex function types ........................ 136 9.3.1 Multiple arguments ...................... 136 9.3.2 Named arguments ....................... 136 9.4 Effect systems ............................. 137 10 Related work 139 10.1 The subtyping order .......................... 140 10.1.1 Structural and non-structural subtyping ........... 140 10.1.2 Recursive types ......................... 141 10.2 Polymorphism .............................. 141 10.2.1 ML-style polymorphism .................... 142 10.2.2 System F-style polymorphism ................. 142 10.2.3 Ad-hoc polymorphism ..................... 142 10.3 Simplification and entailment ..................... 144 10.3.1 Entailment
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages157 Page
-
File Size-