Measure Theory in Noncommutative Spaces

Measure Theory in Noncommutative Spaces

Sym metry comma I n tegra b i l i ty a nd Geometry : .... Methods a nd App l i ca t i ons .... S I GMA 6 open parenthesis 20 1 0 closing nnoindent Sym metry , I n tegra b i l i ty a nd Geometry : n h f i l l Methods a nd App l i ca t i ons n h f i l l S IGMA6 ( 20 10 ) , 72 , 36pa ges parenthesisSym metry comma , I n72 tegra comma b i l i3 ty 6 a pa nd ges Geometry : Methods a nd App l i ca t i ons S I GMA 6 ( 20 1 0 ) , 72 , 3 6 pa ges Measure .. Theory .. in .. Noncommutative .. Spaces to the power of big star ? nnoindentMeasureMeasure nquad TheoryTheory nquad inin nquad NoncommutativeNoncommutative nquad $ SpacesSpaces ^f n star g$ StevenSteven LORD LORD dagger ..y andand Fedor Fedor SUKOCHEV SUKOCHEV ddagger z dagger School of Mathematical Sciences comma .. University of Adelaide comma Adelaide comma .. 5005 comma Australia nnoindenty SchoolSteven of Mathematical LORD $ ndagger Sciences$ ,nquad Universityand Fedor of Adelaide SUKOCHEV , Adelaide $ nddagger , 5005$ , Australia E hyphen mailE -: ..mail s t e : v e ..s tn e period v e lo .. n r . .. lo d at a r d e l a d ide@ perioda d e e ldu a period ide . e.. du a u . a u ddagger School of Mathematics and Statistics comma .... University of New South Wales comma Sydney comma 2052 comma Australia nnoindentz School$ ofndagger Mathematics$ School and Statistics of Mathematical , University Sciences of New , nquad SouthUniversity Wales , Sydney of Adelaide , 2052 , , Adelaide , nquad 5005 , Australia E hyphenAustralia mail : .. f period s .. u k .. o ch .. e v at u n s .. w period edu period .. a u Received March 25 comma 20 1 0 comma in final form August 4 comma 20 1 0 semicolon Published online September 1 6 comma 20 1 0 n centerline fEE− -mail mail : : nquadf . ss t u e k v e onquad chn e .v l o@ nuquad n sr n wquad . edud . $@$ a u adelaide.edu. nquad a u g d oReceived i : 1 0 period March 3 8 25 42 , 20slash 1 0 SI , in .. Gfinal M form .. A period August 2 4 0 , 1 20 0 1period 0 ; Published 0 72 online September 1 6 , 20 1 0 Abstract period The integral in noncommutative geometry open parenthesis NCG closing parenthesis involves a non hyphen st andard trace nnoindentd o i : 1$ 0 .nddagger 3 8 42 / SI$ G School M A . of 2 0 Mathematics 1 0 . 0 72 and Statistics , n h f i l l University of New South Wales , Sydney , 2052 , Australia called .. aAbstract Dixmier .. traceThe periodintegral .. in The noncommutative geometric origins geometry .. of this ( NCG integral ) involves are well a knownnon - st period andard .. trace From a measure hyphen theoretic view comma .. however comma .. the formulation contains several difficulties period .. We re hyphen n centerlinecalledfE − amail Dixmier : nquad tracef . The s n geometricquad u k originsnquad ofo this ch integralnquad aree v well $ known @ $ . u nFrom s nquad w . edu . nquad a u g view resultsa measure concerning - theoretic the technical view , features however of , the the integral formulation in NCG contains and some several outstanding difficulties . We re - problems in this area period The review is aimed for the general user of NCG period nnoindent Receivedview results March concerning 25 , the 20 technical 1 0 , features in final of the form integral August in NCG 4 and , 20 some 1 0 outstanding ; Published online September 1 6 , 20 1 0 Key words : .. Dixmierproblems trace semicolon in this area .. singular . The review trace is semicolon aimed for .. the noncommutative general user of integration NCG . semicolon .. noncommutative geometry semicolon Lebesgue integral semicolon noncommutative residue nnoindentKeydoi words : :10.3842/SIDixmier trace ; singularnquad traceGM ; noncommutativenquad A . 2 0 integration 1 0 . 0 ; 72 noncommutative 201 0 Mathematics Subject Classificationgeometry ; Lebesgue : 46 L 5 1 integral semicolon ; noncommutative 47 B 1 0 semicolon residue 58 B 34 Contents n centerline f Abstract201 0. Mathematics The integral Subject in Classification noncommutative : 46 L geometry 5 1 ; 47 B 1 ( 0 NCG; 58 B ) 34 involves a non − st andard trace g 1 ....Contents I nt ro duction .... 2 2 .... Dix .... m i e r .... t r a c e s .... 5 n centerline1f c a l l e d nquad a Dixmier nquad I ntt r ro a c duction e . nquad The geometric origins nquad of 2 this integral are well known . nquad From g 2 period2 1 .. S in gu la r Dix .. s y m .. metri c f un c m t iion e r als .. period .. period t .. r period a c e s .. period .. period .. 5 period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. n centerline2 .f 1a measure S in gu la− rtheoretic s y m metri view c f un , cn tquad ion alshowever . , .nquad . .the . formulation. contains . several difficulties . nquad We re − g period....................10 .. period .. period .. period .. period .. period .. period .. period .. period .. period .. 1 0 3 .... M .... eas u .... rab .... i lit y .... 1 1 n centerline3f view results M concerning eas u the technical rab features of the i lit integral y in NCG 1 and 1 some outstanding g 3 period3 .1 1 .. D D .. ec ec o om m .. p p.. o so i s t i i t o i no on f o .. f m m e a e s a .. s u r u a r b a le b ..le op op e r e ato r ato r s r .. s period . .. period . .. .period . .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. n centerline.....................13f problems in this area . The review is aimed for the general user of NCG . g period .. period3 . 2.. period C l o .. s eperiod d s y ..m period m e ..tr period i c s .. u periodb id e als .. 1 3 . 3 period 2 .. C l o s e d s y m .. m e tr i c .. s u b id e als .. period .. period .. period .. period .. period .. period .. period .. period .. n centerline......................14fKey words : nquad Dixmier trace ; nquad singular trace ; nquad noncommutative integration ; nquad noncommutative g period4 .. period Origin .. period of .. period t .. period h e .. period no .. n period c o .. period m .. m period u .. t periodat i v ..e i period n t egr .. period al .. 15 period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. 1 4 n centerline4 .f 1geometry N o r m ; al Lebesgue e x te ns ion integral . ; . noncommutative . residue . .g . 4 ...........................17 Origin .... of .... t .... h e .... no .... n c o .... m .... m u .... t at i v e i n t egr al .... 15 4 period 1 .. N o r m .. al e x te ns ion .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. n centerline4 . 2f201 T o 0ols Mathematics fo r t h e n o nSubject co m Classification m u t a t iv e i n t: e 46 g ra L l 5 . 1 ; . 47 . B . 1 0. ; . 58 . B . 34 .g period....................19 .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. nnoindent5Contents Z eta f u n c t i o n s a n d h e a t k e r n e l s 20 period .. 1 75 . 1 R esi d u e s o f z e ta fu n c t io n s . 4 period 2 .. T o ols fo r t h e .. n o n co .. m .. m u .. t a t iv e i n t e g ra l .. period .. period .. period .. period .. period .. period .. nnoindent.......................201 n h f i l l I nt ro duction n h f i l l 2 period .. period5 . 2 .. period H e at .. k perioder n el .. asperiod y m .. periodp to t i .. cs period . ... period . .. .period . .. period . .. period . .. period . .. period . .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. 1 9 nnoindent......................232 n h f i l l Dix n h f i l l m i e r n h f i l l t r a c e s n h f i l l 5 5 ....6 Z eta C fh .... a rac u n te.... r c i t s i oi n .... ng s t .... h ae .... n do .... nh ec a o t .... m k e r m .... n ue l tative s .... 20 i n te g r al 24 5 period 1 .. R .. esi d u .. e s o f .. z e ta fu n c t io .. n s .. period .. period .. period .. period .. period .. period .. period .. period .. n hspace ∗fn6 . 1f i l lChg2 a r. a 1 n cquad t e r isS a in ti on gu a n l a d r sn inquad gu las r y t m r anquad c e smetri . c . f . un . c .t ion . als .nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad . nquad 1 0 period....................24 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us