Logic in Computer Science

Logic in Computer Science

LOGIC IN COMPUTER SCIENCE by Benji MO Some people are always critical of vague statements. I tend rather to be critical of precise statements. They are the only ones which can correctly be labeled wrong. { Raymond Smullyan August 2020 Supervisor: Professor Hantao Zhang TABLE OF CONTENTS Page LIST OF FIGURES . viii CHAPTER 1 Introduction to Logic . 1 1.1 Logic is Everywhere . 2 1.1.1 Statement or Proposition . 2 1.1.2 A Brief History of Logic . 4 1.2 Logical Fallacies in Arguments . 5 1.2.1 Formal Fallacies . 5 1.2.2 Informal Fallacies . 7 1.3 A Brief Review of Mathematical Logic . 13 1.3.1 Set Theory . 13 1.3.2 Model Theory . 21 1.3.3 Proof Theory . 22 1.3.4 Computability Theory . 25 1.4 Exercise Problems . 29 2 Propositional Logic . 32 2.1 Syntax . 32 2.1.1 Logical Operators . 32 2.1.2 Formulas . 34 2.2 Semantics . 36 2.2.1 Interpretations . 36 2.2.2 Models, Satisfiability, and Validity . 38 2.2.3 Equivalence . 40 2.2.4 Entailment . 43 2.2.5 Theorem Proving and the SAT Problem . 45 2.3 Normal Forms . 46 2.3.1 Negation Normal Form (NNF) . 48 2.3.2 Conjunctive Normal Form (CNF) . 49 2.3.3 Disjunctive Normal Form (DNF) . 51 2.3.4 Full DNF and Full CNF from Truth Table . 53 2.3.5 Binary Decision Diagram (BDD) . 54 2.4 Optimization Problems . 59 2.4.1 Minimum Set of Operators . 59 iii 2.4.2 Logic Minimization . 61 2.4.3 Maximum Satisfiability . 69 2.5 Using Propositional Logic . 70 2.5.1 Bitwise Operators . 70 2.5.2 Specify Problems in Propositional Logic . 72 2.6 Exercise Problems . 77 3 Proof Procedures for Propositional Logic . 85 3.1 Semantic Tableau . 87 3.1.1 Tableau: A Tree Structure for DNF . 88 3.1.2 α-Rules and β-Rules . 89 3.2 Deductive Systems . 92 3.2.1 Inference Rules and Proofs . 92 3.2.2 Hilbert Systems . 94 3.2.3 Natural Deduction . 96 3.2.4 Inference Graphs . 99 3.3 Resolution . 100 3.3.1 Resolution Rule . 100 3.3.2 Resolution Strategies . 103 3.3.3 Preserving Satisfiability . 105 3.3.4 Completeness of Resolution . 108 3.3.5 A Resolution-based Decision Procedure . 110 3.3.6 Clause Deletion Strategies . 112 3.4 Boolean Constraint Propagation (BCP) . 115 3.4.1 BCP: a Simplification Procedure . 115 3.4.2 BCP: a Decision Procedure for Horn Clauses . 117 3.4.3 Unit Resolution versus Input Resolution . 118 3.4.4 Head/Tail Literals for BCP . 120 3.5 Exercise Problems . 124 4 Propositional Satisfiability . 128 4.1 The DPLL Algorithm . 129 4.1.1 Recursive Version of DPLL . 129 4.1.2 All-SAT and Incremental SAT Solvers . 132 4.1.3 BCPw: Implementation of Watch Literals . 133 4.1.4 Iterative Implementation of DPLL . 136 4.2 Conflict-Driven Clause Learning (CDCL) . 138 4.2.1 Generating Clauses from Conflicting Clauses . 139 4.2.2 DPLL with CDCL . 140 4.2.3 Unsatisfiable Cores . 143 4.2.4 Random Restart . 144 4.2.5 Branching Heuristics for DPLL . 145 4.3 Use of SAT Solvers . 147 iv 4.3.1 Specify SAT Instances in DIMACS Format . 148 4.3.2 Sudoku Puzzle . 149 4.3.3 Latin Square Problems . 151 4.3.4 Graph Problems . 152 4.4 Local Search Methods and MaxSAT . 154 4.4.1 Local Search Methods for SAT . 154 4.4.2 2SAT vesus Max2SAT . 157 4.5 Maximum Satisfiability . 159 4.5.1 Weight MaxSAT and Hybrid MaxSAT . 159 4.5.2 The Branch-and-Bound Algorithm . 161 4.5.3 Simplification Rules and Lower Bound . 163 4.5.4 Use of Hybrid MaxSAT Solvers . 166 4.6 Exercise Problems . 168 5 First Order Logic . 172 5.1 Syntax of First Order Languages . 172 5.1.1 Terms and Formulas . 172 5.1.2 The Quantifiers . 176 5.1.3 Unsorted and Many-Sorted Logics . 178 5.2 Semantics . 180 5.2.1 Interpretation . 180 5.2.2 Models, Satisfiability, and Validity . 184 5.2.3 Entailment and Equivalence . 186 5.3 Proof Methods . 189 5.3.1 Semantic Tableau . 189 5.3.2 Natural Deduction . 192 5.4 Conjunctive Normal Form . 192 5.4.1 Prenex Normal Form . 193 5.4.2 Skolemization . 195 5.4.3 Skolemizing Non-Prenex Formulas . 198 5.4.4 Clausal Form . 199 5.4.5 Herbrand Models for CNF . 200 5.5 Exercise Problems . 202 6 Unification and Resolution . 206 6.1 Unification . 206 6.1.1 Substitutions and Unifiers . 206 6.1.2 Combining Substitutions . 208 6.1.3 Rule-Based Unification . 209 6.1.4 Practically Linear Time Unification . 212 6.2 Resolution . 219 6.2.1 The Resolution and Factoring Rules . 219 6.2.2 A Refutational Proof Procedure . 221 v 6.3 Ordered Resolution . 223 6.3.1 Simplification Orders . 223 6.3.2 Completeness of Ordered Resolution . 228 6.4 Prover9: A Resolution Theorem Prover . 230 6.4.1 Input Formulas to Prover9 . 230 6.4.2 Inference Rules and Options . 233 6.4.3 Simplification Orders in Prover9 . 236 6.5 Exercise Problems . 238 7 Equational Logic . 241 7.1 Equality of Terms . 241 7.1.1 Axioms of Equality . 242 7.1.2 Semantics of \=" . 243 7.1.3 Theory of Equations . 245 7.2 Rewrite Systems . 247 7.2.1 Rewrite Rules . 247 7.2.2 Termination of Rewrite Systems . 248 7.2.3 Confluence of Rewriting . 249 7.2.4 The Knuth-Bendix Completion Procedure . 251 7.3 Inductive Theorem Proving . 257 7.3.1 Inductive Theorems . 257 7.3.2 Structural Induction . 258 7.3.3 Induction on Two Variables . 260 7.3.4 Multi-Sort Algebraic Specifications . 261 7.4 Resolution with Equality . 264 7.4.1 Paramodulation . 264 7.4.2 Simplification Rules . 266 7.4.3 Equality in Prover9 . 268 7.5 Mace4: Finite Model Finding in FOL . 270 7.5.1 Use of Mace4 . 270 7.5.2 Finite Model Finding by SAT Solvers . 274 7.6 Exercise Problems . 276 8 Prolog: Programming in Logic . 278 8.1 Prolog's Working Principle . 278 8.1.1 Horn Clauses in Prolog . 278 8.1.2 Resolution Proofs in Prolog . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    317 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us