
Inflationary Gravity Waves with ADVANCED LIGO Alejandro O. Lopez Advisor: Katherine Freese University of Michigan arXiv: astro-ph/1305.5855 Old Inflation The first inflationary model was proposed by Alan Guth in 1980 [1]. Г ρv Old Inflation Failed No Reheating Swiss Cheese Universe Why? Constant nucleation rate, Γ, models fail due to opposing constraints: ~ 60 e-folds vs percolation (requires <~1 e-fold) [2] Solutions to Problem To overcome the problems faced by “old” inflation and maintain a First-Order Phase Transition, new models were N=60 e-folds proposed with a time- dependent nucleation rate. The time dependence has been proposed by Adams and Freese (1990) and Linde Χ e-f (1990) to arise from multi-field olds interactions [3,4]. Other First-Order Phase Transition Models that include M. Cortes and A. Liddle, Phys. Rev. D 80, 083524 a time-dependent nucleation rate are extended inflationary models. Gravitational Wave energy spectrum: Peak frequency and amplitude: (Following Results of Huber and Konstandin [5]) Parameters of the GW spectrum The Gravitational Wave energy spectrum is characterized by 2 parameters: χ = Number of e-folds that the universe is stuck here. ρv= Energy density difference between the false and true vacuum. Results Results ρv Results ρv v Ρ Future Work: Slower Phase Transition Calculate GW energy spectrum for 1<χ<3.4 2 Since ΩGW scales as χ , then potential larger signal. Work will be done by simulations (Giblin) and analytically (2-bubble collisions) Future Work: Chain Inflation Another solution to the problem of ~ 60 e-folds vs percolation is Chain Inflation Peak frequency and amplitude: Total GW energy density is given by: Look for Oscillations and compare to Planck Data Thank You! References [1] A. Guth, The Inflationary Universe: A Possible Solution To The Horizon And Flatness Problem, Phys. Rev. D. 23,347. [2] A. Guth and E. Weinberg, Could the universe have recovered from a slow first-order phase transition, Nucl. Phys B 212, 321 (1983). [3] A. Linde, Eternal extended inflation and graceful exit from old inflation without Jordan-Brans-Dicke, Phys. Lett. B 249, 18 (1990). [4] F.C. Adams and K. Freese, Double field inflation, Phys. Rev. D 43, 353 (1991). [5] S.J. Huber and T. Konstandin, Gravitational Wave Production by Collisions: More Bubbles, arXiv:hep- ph/0806.1828 (2008) .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-