The Drazin Inverse of the Sum of Two Matrices and Its Applications

The Drazin Inverse of the Sum of Two Matrices and Its Applications

<p>Filomat 31:16 (2017), 5151–5158 https://doi.org/10.2298/FIL1716151X </p><p>Published by Faculty of Sciences and Mathematics, University of Nisˇ, Serbia </p><p>Available at: <a href="/goto?url=http://www.pmf.ni.ac.rs/filomat" target="_blank">http://www.pmf.ni.ac.rs/filomat </a></p><p><strong>The Drazin Inverse of the Sum of Two Matrices and its Applications </strong></p><p><strong>Lingling Xia</strong><sup style="top: -0.3013em;"><strong>a</strong></sup><strong>, Bin Deng</strong><sup style="top: -0.3013em;"><strong>a </strong></sup></p><p><sup style="top: -0.2411em;">a</sup>School of Mathematics, Hefei University of Technology, Hefei, 230009,China </p><p><strong>Abstract. </strong>In this paper, we give the results for the Drazin inverse of P + Q, then derive a representation </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>AC<br>BD</p><p></p><ul style="display: flex;"><li style="flex:1">for the Drazin inverse of a block matrix M = </li><li style="flex:1">under some conditions. Moreover, some alternative </li></ul><p>representations for the Drazin inverse of M<sup style="top: -0.2713em;">D </sup>where the generalized Schur complement S = D − CA<sup style="top: -0.2713em;">D</sup>B is nonsingular. Finally, the numerical example is given to illustrate our results. </p><p><strong>1. Introduction&nbsp;and preliminaries </strong></p><p>Let C<sup style="top: -0.3013em;">n×n </sup>denote the set of&nbsp;n × n complex matrix. By&nbsp;R(A), N(A) and&nbsp;rank(A) we&nbsp;denote the range, the null space and the rank of matrix A. The Drazin inverse of A is the unique matrix A<sup style="top: -0.3013em;">D </sup>satisfying </p><p></p><ul style="display: flex;"><li style="flex:1">A<sup style="top: -0.3013em;">D</sup>AA<sup style="top: -0.3013em;">D </sup>= A<sup style="top: -0.3013em;">D</sup>, </li><li style="flex:1">AA<sup style="top: -0.3013em;">D </sup>= A<sup style="top: -0.3013em;">D</sup>A, </li></ul><p></p><p>A<sup style="top: -0.3013em;">k+1</sup>A<sup style="top: -0.3013em;">D </sup>= A<sup style="top: -0.3013em;">k</sup>. </p><p>(1) where k = ind(A) is&nbsp;the index of&nbsp;A, the smallest nonnegative integer&nbsp;k which satisfies&nbsp;rank(A<sup style="top: -0.3013em;">k+1</sup>) = rank(A<sup style="top: -0.3013em;">k</sup>). If ind(A) = 0, then we call&nbsp;A<sup style="top: -0.3013em;">D </sup>is the group inverse of A and denote it by&nbsp;A<sup style="top: -0.3013em;">]</sup>. If&nbsp;ind(A) = 0, then&nbsp;A<sup style="top: -0.3013em;">D </sup>= A<sup style="top: -0.3013em;">−1</sup>. In addition, we denote&nbsp;A<sup style="top: -0.3013em;">π </sup>= I − AA<sup style="top: -0.3013em;">D</sup>, and define&nbsp;A<sup style="top: -0.3013em;">0 </sup>= I, where I is the identity matrix with proper sizes[1]. <br>For A ∈ C<sup style="top: -0.3014em;">n×n</sup>, k is the index of A, there exists unique matrices&nbsp;C and N, such that&nbsp;A = C + N, CN = NC = 0, <br>N is the nilpotent of index k, and ind(C) = 0 or 1.We shall always use C, N in this context and will refer to A = C + N as the core-nilpotent decomposition of A, Note that&nbsp;A<sup style="top: -0.3014em;">D </sup>= C<sup style="top: -0.3014em;">D</sup>. <br>The Drazin inverse of a square matrix is widely applied in many fields, such as singular differential or difference equations, Markov chains, iterative method, cryptography and numerical analysis,which can be found in[2, 3]. The Drazin inverse in perturbation bounds for the relative eigenvalue problem has an important application value [4]. Accordingly, the Drazin inverse of&nbsp;2 × 2 block matrix and its applications can be found in [3]. <br>Suppose P, Q ∈ C<sup style="top: -0.3013em;">n×n </sup>such that PQ = QP = 0, then (P + Q)<sup style="top: -0.3013em;">D</sup>=P<sup style="top: -0.3013em;">D</sup>+Q<sup style="top: -0.3013em;">D</sup>. This result was firstly proved by <br>Drazin [5] in 1958. In 2001, Hartwig et al. [6] gave a formula for (P+Q)<sup style="top: -0.3013em;">D </sup>under the one side condition PQ = 0. In 2005, Castro-Gonza´lez [7] derived a result under the conditions P<sup style="top: -0.3013em;">D</sup>Q = 0, PQ<sup style="top: -0.3013em;">D </sup>= 0 and Q<sup style="top: -0.3013em;">π</sup>PQP<sup style="top: -0.3013em;">π </sup>= 0. In 2009, Mart´ınez-Serrano and Castro-Gonza´lez [8] extended these results to the case P<sup style="top: -0.3014em;">2</sup>Q = 0, Q<sup style="top: -0.3014em;">2 </sup>= 0 and gave the formula for (P + Q)<sup style="top: -0.3014em;">D</sup>. Hartwig and Patricio [9] under the condition P<sup style="top: -0.3014em;">2</sup>Q + PQ<sup style="top: -0.3014em;">2 </sup>= 0. In 2010, Wei and Deng [10] studied the additive result for generalized Drazin inverse under the commutative condition of PQ = QP on a Banach space. Liu et al. [11] gave the representations of the Drazin inverse of (P ± Q)<sup style="top: -0.3013em;">D </sup>with P<sup style="top: -0.3013em;">3</sup>Q = QP and Q<sup style="top: -0.3013em;">3</sup>P = PQ satisfied. In 2011, Liu et al. [12] extended the results to the case P<sup style="top: -0.3013em;">2</sup>Q = 0, QPQ = 0. In 2012, Bu et al. [13] gave the representations of the Drazin inverse of (P + Q)<sup style="top: -0.3013em;">D </sup>under the following conditions: </p><p>(i)P<sup style="top: -0.3428em;">2</sup>Q = 0, Q<sup style="top: -0.3428em;">2</sup>P = 0; (ii)QPQ = 0, QP<sup style="top: -0.3428em;">2</sup>Q = 0, P<sup style="top: -0.3428em;">3</sup>Q = 0. </p><p>2010 Mathematics Subject Classification. 15A09 </p><p>Keywords. Drazin inverse,Block matrix,Generalized Schur complement,Index Received: 25 September 2014; Revised: 07 January 2015; Accepted: 21 January 2015 Communicated by Dragana Cvetkovic´ - Ilic´ This work was supported by the Fundamental Research Funds for the Central Universities(J2014HGXJ0068) </p><p>Email address: <a href="mailto:[email protected]" target="_blank">[email protected] </a>(Bin Deng) </p><p>L. Xia, B. Deng / Filomat 31:16 (2017), 5151–5158 </p><p>5152 <br>The results about the representation of (P + Q)<sup style="top: -0.3013em;">D </sup>are useful in computing the representations of the Drazin inverse for block matrices, analyzing a class of perturbation and iteration theory. The general questions of how </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>D</p><p>AC<br>BD</p><p></p><ul style="display: flex;"><li style="flex:1">to express (P + Q)<sup style="top: -0.3014em;">D </sup>by P, Q, P<sup style="top: -0.3014em;">D</sup>, Q<sup style="top: -0.3014em;">D </sup>and </li><li style="flex:1">by A, B, C, D without side condition are very difficult and </li></ul><p>have not been solved. <br>In this paper, we first give the formulas of (P + Q)<sup style="top: -0.3014em;">D </sup>under the conditions P<sup style="top: -0.3014em;">2</sup>Q = 0, PQ + QP = 0 and </p><p>T</p><p>P<sup style="top: -0.3014em;">D</sup>Q = 0, PQ − QP = 0, N(P) N(Q) = 0. And similar reasoning is presented. In the second, we use the </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>AC<br>BD</p><p></p><ul style="display: flex;"><li style="flex:1">formulas of (P + Q)<sup style="top: -0.3013em;">D </sup>to give some representations for the Drazin inverse of block matrix M = </li><li style="flex:1">(A and </li></ul><p>D are square) under some conditions. Then we give the representation of M<sup style="top: -0.3013em;">D </sup>in which the generalized Schur complement S = D − CA<sup style="top: -0.3013em;">D</sup>B is nonsingular under new conditions. Finally, we take some numerical examples to illustrate our results. <br>Before giving the main results, we first introduce several lemmas as follows. </p><p><strong>Lemma 1.1.&nbsp;</strong>([14]) Let </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>AC</p><p>0</p><p>B<br>B</p><p>0</p><p>CA</p><p>M<sub style="top: 0.1246em;">1 </sub>= </p><p>,</p><p>M<sub style="top: 0.1246em;">2 </sub>= </p><p>,</p><p>where A and B are square matrices with ind(A)=r and ind(B)=s. Then </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>A<sup style="top: -0.3013em;">D </sup></p><p>X</p><p>0</p><p>B<sup style="top: -0.3013em;">D </sup></p><p>0</p><p>X</p><p>M<sup style="top: -0.3014em;">D</sup><sub style="top: 0.3069em;">1 </sub>= </p><p>,</p><p>M<sup style="top: -0.3014em;">D</sup><sub style="top: 0.2972em;">2 </sub>= </p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1">B<sup style="top: -0.3013em;">D </sup></li><li style="flex:1">A<sup style="top: -0.3013em;">D </sup></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">P</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">r−1 </li><li style="flex:1">s−1 </li></ul><p></p><p>where X = <sub style="top: 0.2178em;">i=0 </sub>(B<sup style="top: -0.3013em;">D</sup>)<sup style="top: -0.3013em;">i+2</sup>CA<sup style="top: -0.3013em;">i</sup>A<sup style="top: -0.3013em;">π </sup>+ B<sup style="top: -0.3013em;">π </sup><sub style="top: 0.2178em;">i=0 </sub>B<sup style="top: -0.3013em;">i</sup>C(A<sup style="top: -0.3013em;">D</sup>)<sup style="top: -0.3013em;">i+2 </sup>− B<sup style="top: -0.3013em;">D</sup>CA<sup style="top: -0.3013em;">D</sup>. <strong>Lemma 1.2.&nbsp;</strong>([6]) Let P, Q ∈ C<sup style="top: -0.3013em;">n×n </sup>be such that ind(P)=r, ind(Q)=s and PQ = 0. Then </p><p></p><ul style="display: flex;"><li style="flex:1">s−1 </li><li style="flex:1">r−1 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p>(P + Q)<sup style="top: -0.3013em;">D </sup>= Q<sup style="top: -0.3013em;">π </sup>Q<sup style="top: -0.3429em;">i</sup>(P<sup style="top: -0.3429em;">D</sup>)<sup style="top: -0.3429em;">i+1 </sup></p><p>+</p><p>(Q<sup style="top: -0.3429em;">D</sup>)<sup style="top: -0.3429em;">i+1</sup>P<sup style="top: -0.3429em;">i</sup>P<sup style="top: -0.3429em;">π</sup>. </p><p></p><ul style="display: flex;"><li style="flex:1">i=0 </li><li style="flex:1">i=0 </li></ul><p></p><p><strong>Lemma 1.3.&nbsp;</strong>([8]) Let A, B ∈ C<sup style="top: -0.3014em;">n×n </sup></p><p>,<br>(i) If R is nonsingular and B = RAR<sup style="top: -0.3013em;">−1</sup>, then B<sup style="top: -0.3013em;">D </sup>= RA<sup style="top: -0.3013em;">D</sup>R<sup style="top: -0.3013em;">−1</sup>. </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>A<sub style="top: 0.1246em;">1 </sub></p><p>0<br>0</p><p>A<sub style="top: 0.1246em;">2 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">(ii) If ind(A)=k ≥ 0, then exists a nonsingular matrix R such that A = R </li><li style="flex:1">R<sup style="top: -0.3014em;">−1</sup>, where A<sub style="top: 0.1245em;">1 </sub>∈ C<sup style="top: -0.3014em;">r×r </sup>is </li></ul><p>nonsingular and A<sub style="top: 0.1246em;">2 </sub>∈ C<sup style="top: -0.3013em;">(n−r)×(n−r) </sup>is k-nilpotent. Relative to the above form, A<sup style="top: -0.3013em;">D </sup>and A<sup style="top: -0.3013em;">π </sup>= I − AA<sup style="top: -0.3013em;">D</sup>, are given by </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>A<sup style="top: -0.3014em;">−</sup><sub style="top: 0.3058em;">1 </sub><sup style="top: -0.3014em;">1 </sup></p><p>0<br>00<br>00<br>0</p><p>I<br>A<sup style="top: -0.3014em;">D </sup>= R </p><p>R<sup style="top: -0.3014em;">−1</sup>, </p><p>A<sup style="top: -0.3014em;">π </sup>= R </p><p>R<sup style="top: -0.3014em;">−1</sup>. </p><p><strong>Lemma 1.4.&nbsp;</strong>([5]) Let P, Q ∈ C<sup style="top: -0.3013em;">n×n </sup>be such that PQ = QP = 0, then (P + Q)<sup style="top: -0.3013em;">D </sup>= P<sup style="top: -0.3013em;">D </sup>+ Q<sup style="top: -0.3013em;">D</sup>. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p><strong>Lemma 1.5.&nbsp;</strong>([1]) Let A ∈ C<sup style="top: -0.3014em;">m×n</sup>, B ∈ C<sup style="top: -0.3014em;">n×m</sup>, then (AB)<sup style="top: -0.3014em;">D </sup>= A (BA)<sup style="top: -0.3014em;">2 </sup><sup style="top: -0.6362em;">D</sup>B. <strong>Lemma 1.6.&nbsp;</strong>([1]) Let A, B ∈ C<sup style="top: -0.3013em;">n×n</sup>, if AB = BA, then </p><p>(i) (AB)<sup style="top: -0.3013em;">D </sup>= B<sup style="top: -0.3013em;">D</sup>A<sup style="top: -0.3013em;">D </sup>= A<sup style="top: -0.3013em;">D</sup>B<sup style="top: -0.3013em;">D</sup>. (ii) A<sup style="top: -0.3014em;">D</sup>B = BA<sup style="top: -0.3014em;">D </sup>and AB<sup style="top: -0.3014em;">D </sup>= B<sup style="top: -0.3014em;">D</sup>A. </p><p><strong>Lemma 1.7.&nbsp;</strong>([20]) Let A, B ∈ C<sup style="top: -0.3014em;">n×n</sup>, suppose that c is such that (cA + B) is invertible, then <br>(i) (cA + B)<sup style="top: -0.3014em;">−1</sup>A and (cA + B)<sup style="top: -0.3014em;">−1</sup>B commute; </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>(ii) N(A) ∩ N(B) = {0} and N(A) = N (cA + B)<sup style="top: -0.3013em;">−1</sup>A , N(B) = N (cA + B)<sup style="top: -0.3013em;">−1</sup>B . </p><p>L. Xia, B. Deng / Filomat 31:16 (2017), 5151–5158 </p><p>5153 </p><p><strong>2. Additive&nbsp;Results </strong></p><p>In [10], Wei and Deng studied the additive result for generalized Drazin inverse under the commutative condition of PQ = QP on a Banach space. In this section, we will give the Drazin inverse of P + Q under the conditions that P<sup style="top: -0.3013em;">2</sup>Q = 0, PQ + QP = 0 and P<sup style="top: -0.3013em;">D</sup>Q = 0, PQ − QP = 0, N(P) ∩ N(Q) = {0}, which will be the main tool in our following development. </p><p><strong>Theorem 2.1.&nbsp;</strong>Let P, Q ∈ C<sup style="top: -0.3013em;">n×n </sup>be such that P<sup style="top: -0.3013em;">2</sup>Q = 0, PQ + QP = 0, then </p><p>(P + Q)<sup style="top: -0.3013em;">D </sup>= P<sup style="top: -0.3013em;">D </sup>+ (P + Q)(Q<sup style="top: -0.3013em;">D</sup>)<sup style="top: -0.3013em;">2</sup>. </p><p>(2) <br>Proo f. From the conditions of theorem , we can know P<sup style="top: -0.3013em;">2</sup>Q = −PQP = QP<sup style="top: -0.3013em;">2 </sup>= 0. </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>P<sub style="top: 0.1245em;">1 </sub></p><p>0</p><p>P<sub style="top: 0.1246em;">2 </sub><br>Q<sub style="top: 0.1245em;">1 </sub>Q<sub style="top: 0.1245em;">12 </sub>Q<sub style="top: 0.1246em;">21 </sub>Q<sub style="top: 0.1246em;">2 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">Let P = R </li><li style="flex:1">R<sup style="top: -0.3013em;">−1</sup>, where P<sub style="top: 0.1246em;">1 </sub>is nonsingular and P<sub style="top: 0.1246em;">2 </sub>is nilpotent. Write Q = R </li><li style="flex:1">R<sup style="top: -0.3013em;">−1</sup>. Form </li></ul><p>0</p><p>P<sup style="top: -0.3013em;">2</sup>Q = 0 it follows </p><p>Q<sub style="top: 0.1246em;">1 </sub>= 0, Q<sub style="top: 0.1246em;">12 </sub>= 0, P<sup style="top: -0.3013em;">2</sup><sub style="top: 0.2962em;">2</sub>Q<sub style="top: 0.1246em;">21 </sub>= 0, P<sub style="top: 0.2962em;">2</sub><sup style="top: -0.3013em;">2</sup>Q<sub style="top: 0.1246em;">2 </sub>= 0 </p><p>Form QP<sup style="top: -0.3014em;">2 </sup>= 0 it follows <br>(3) </p><p>Q<sub style="top: 0.1245em;">21 </sub>= 0, Q<sub style="top: 0.1245em;">2</sub>P<sup style="top: -0.3014em;">2</sup><sub style="top: 0.2962em;">2 </sub>= 0. </p><p>(4) (5) <br>Form PQ + QP = 0 it follows P<sub style="top: 0.1246em;">2</sub>Q<sub style="top: 0.1246em;">2 </sub>+ Q<sub style="top: 0.1246em;">2</sub>P<sub style="top: 0.1246em;">2 </sub>= 0. Now, using&nbsp;Lemma 1.1&nbsp;we obtain </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">D</li><li style="flex:1">D</li></ul><p></p><p>P<sub style="top: 0.1246em;">1 </sub></p><p>0<br>0</p><p>P<sup style="top: -0.3013em;">−</sup><sub style="top: 0.3058em;">1 </sub><sup style="top: -0.3013em;">1 </sup></p><p>0<br>0</p><p></p><ul style="display: flex;"><li style="flex:1">(P + Q)<sup style="top: -0.3014em;">D </sup>= R </li><li style="flex:1">R<sup style="top: -0.3014em;">−1 </sup>= R </li></ul><p></p><p>R<sup style="top: -0.3014em;">−1</sup>. </p><p></p><ul style="display: flex;"><li style="flex:1">(P<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>)<sup style="top: -0.3013em;">D </sup></li><li style="flex:1">P<sub style="top: 0.1246em;">2 </sub>+ Q<sub style="top: 0.1246em;">2 </sub></li></ul><p></p><p>Now, we need compute (P<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>)<sup style="top: -0.3014em;">D</sup>. </p><p>(P<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>)<sup style="top: -0.3014em;">2 </sup>= P<sub style="top: 0.2961em;">2</sub><sup style="top: -0.3014em;">2 </sup>+ Q<sub style="top: 0.2961em;">2</sub><sup style="top: -0.3014em;">2 </sup>+ P<sub style="top: 0.1245em;">2</sub>Q<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>P<sub style="top: 0.1245em;">2 </sub>= P<sup style="top: -0.3014em;">2</sup><sub style="top: 0.2961em;">2 </sub>+ Q<sup style="top: -0.3014em;">2</sup><sub style="top: 0.2961em;">2</sub>, (P<sup style="top: -0.3014em;">2</sup><sub style="top: 0.2961em;">2</sub>)<sup style="top: -0.3014em;">D </sup>= (P<sub style="top: 0.2972em;">2</sub><sup style="top: -0.3014em;">D</sup>)<sup style="top: -0.3014em;">2 </sup>= 0. </p><p>Applying (3) and (4) and Lemma 1.4, we get </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>D</p><p>(P<sub style="top: 0.1246em;">2 </sub>+ Q<sub style="top: 0.1246em;">2</sub>)<sup style="top: -0.3013em;">2 </sup>= (P<sup style="top: -0.3013em;">2</sup><sub style="top: 0.2962em;">2 </sub>+ Q<sup style="top: -0.3013em;">2</sup><sub style="top: 0.2962em;">2</sub>)<sup style="top: -0.3013em;">D </sup>= (Q<sup style="top: -0.3013em;">2</sup><sub style="top: 0.2962em;">2</sub>)<sup style="top: -0.3013em;">D</sup>. </p><p>Further, </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>D</p><p>(P<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>)<sup style="top: -0.3013em;">D </sup>= (P<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>) (P<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>)<sup style="top: -0.3013em;">2 </sup>= (P<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>)(Q<sup style="top: -0.3013em;">2</sup><sub style="top: 0.2962em;">2</sub>)<sup style="top: -0.3013em;">D</sup>. </p><p>(6) <br>By substituting (6) in (5), we get </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>P<sub style="top: 0.1246em;">1 </sub></p><p>0<br>00<br>00<br>0</p><p></p><ul style="display: flex;"><li style="flex:1">(P + Q)<sup style="top: -0.3014em;">D </sup>= R </li><li style="flex:1">R<sup style="top: -0.3013em;">−1 </sup>+ R </li><li style="flex:1">R<sup style="top: -0.3013em;">−1 </sup>= P<sup style="top: -0.3013em;">D </sup>+ (P + Q)(Q<sup style="top: -0.3013em;">D</sup>)<sup style="top: -0.3013em;">2</sup>. </li></ul><p></p><p>(P<sub style="top: 0.1245em;">2 </sub>+ Q<sub style="top: 0.1245em;">2</sub>)<sup style="top: -0.3014em;">D </sup></p><p>Using the similar method as in the proof of Theorem 2.1,&nbsp;We get the following two results. </p><p><strong>Theorem 2.2.&nbsp;</strong>Let P, Q ∈ C<sup style="top: -0.3014em;">n×n </sup>be such that P<sup style="top: -0.3014em;">2</sup>Q = 0, QP<sup style="top: -0.3014em;">π </sup>= 0, then </p><p>(P + Q)<sup style="top: -0.3013em;">D </sup>= P<sup style="top: -0.3013em;">D </sup>+ Q(P<sup style="top: -0.3013em;">D</sup>)<sup style="top: -0.3013em;">2 </sup>+ PQ(P<sup style="top: -0.3013em;">D</sup>)<sup style="top: -0.3013em;">3</sup>. </p><p>(7) (8) </p><p><strong>Theorem 2.3.&nbsp;</strong>Let P, Q ∈ C<sup style="top: -0.3013em;">n×n </sup>be such that P<sup style="top: -0.3013em;">D</sup>Q = 0, QP<sup style="top: -0.3013em;">π </sup>= 0, s = indP, then </p><p>s−1 </p><p>X</p><p>(P + Q)<sup style="top: -0.3014em;">D </sup>= P<sup style="top: -0.3014em;">D </sup>+ </p><p>P<sup style="top: -0.3429em;">i</sup>Q(P<sup style="top: -0.3429em;">D</sup>)<sup style="top: -0.3429em;">i+2 </sup></p><p>.</p><p>i=0 </p><p>L. Xia, B. Deng / Filomat 31:16 (2017), 5151–5158 </p><p>5154 <br>(9) </p><p><strong>Theorem 2.4.&nbsp;</strong>Let P, Q ∈ C<sup style="top: -0.3013em;">n×n </sup>be such that PQ = QP, P<sup style="top: -0.3013em;">D</sup>Q = 0, N(P) ∩ N(Q) = {0}, then </p><p>k−1 </p><p>X</p><p>(P + Q)<sup style="top: -0.3014em;">D </sup>= P<sup style="top: -0.3014em;">D </sup>+ </p><p>(Q<sup style="top: -0.3429em;">D</sup>)<sup style="top: -0.3429em;">n+1</sup>(−P)<sup style="top: -0.3429em;">n</sup>. </p><p>n=0 </p><p>where k = ind(P). </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>P<sub style="top: 0.1246em;">1 </sub></p><p>0<br>0</p><p>P<sub style="top: 0.1245em;">2 </sub></p><p>Proo f. Let P = R </p><p>R<sup style="top: -0.3014em;">−1</sup>, where P<sub style="top: 0.1245em;">1 </sub>and R is nonsingular, and P<sub style="top: 0.1245em;">2 </sub>is nilpotent, then exists a positive real </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>Q<sub style="top: 0.1245em;">1 </sub>Q<sub style="top: 0.1245em;">12 </sub>Q<sub style="top: 0.1245em;">21 </sub>Q<sub style="top: 0.1245em;">2 </sub></p><p>number k, satisfy P<sup style="top: -0.3013em;">k</sup><sub style="top: 0.2972em;">2 </sub>= 0, and we can easy know k = ind(P). Write Q = R follows Q<sub style="top: 0.1245em;">1 </sub>= 0, Q<sub style="top: 0.1245em;">2 </sub>= 0. <br>R<sup style="top: -0.3013em;">−1</sup>. From P<sup style="top: -0.3013em;">D</sup>Q = 0 it <br>Now, from PQ = QP it follows P<sub style="top: 0.1245em;">2</sub>Q<sub style="top: 0.1245em;">3 </sub>= Q<sub style="top: 0.1245em;">3</sub>P<sub style="top: 0.1245em;">1</sub>, P<sub style="top: 0.1245em;">2</sub>Q<sub style="top: 0.1245em;">4 </sub>= Q<sub style="top: 0.1245em;">4</sub>P<sub style="top: 0.1245em;">2</sub>. Then P<sup style="top: -0.3013em;">k</sup><sub style="top: 0.2972em;">2</sub>Q<sub style="top: 0.1246em;">3 </sub>= Q<sub style="top: 0.1246em;">3</sub>P<sub style="top: 0.3069em;">1</sub><sup style="top: -0.3013em;">k </sup>= 0. Thus Q<sub style="top: 0.1246em;">3 </sub>= 0 since P<sub style="top: 0.3069em;">1</sub><sup style="top: -0.3013em;">k </sup>is invertible. Next we will show that Q<sub style="top: 0.1246em;">4 </sub>is invertible. If P<sub style="top: 0.1245em;">2 </sub>= 0, the assumption N(P) ∩ N(Q) = {0} implies N(Q<sub style="top: 0.1245em;">4</sub>) = {0}, and we are done. If P<sub style="top: 0.1245em;">2 </sub>, 0, suppose there exists a v , 0 such that v ∈ N(Q<sub style="top: 0.1246em;">4</sub>). Then </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us