1 Some Important Continuous Distributions

1 Some Important Continuous Distributions

ISyE8843A, Brani Vidakovic Handout 0 1 Some Important Continuous Distributions 1.1 Uniform U(a; b) Distribution Random variable X has uniform U(a; b) distribution if its density is given by 8 ½ < 0; x < a 1 ; a · x · b f(xja; b) = b¡a F (xja; b) = x¡a ; a · x · b 0; else : b¡a 1; x > b k 1 bk+1¡ak+1 ² Moments: EX = b¡a k+1 ; k = 1; 2;::: (b¡a)2 ² Variance V arX = 12 : 1 eitb¡eita ² Characteristic Function '(t) = b¡a it : X¡a ² If X »U(a; b) then Y = b¡a »U(0; 1): ² Typical model: Rounding (to the nearest integer) Error is often modeled as U(¡1=2; 1=2) ² If X » F , where F is a continuous cdf, then Y = F (X) »U(0; 1): 1.2 Exponential E(¸) Distribution Random variable X has exponential E(¸) distribution if its density and cdf are given by ½ ½ ¸e¡¸x; x ¸ 0 1 ¡ e¡¸x; x ¸ 0 f(xj¸) = ;F (xj¸) = 0; else 0; else k k! ² Moments: EX = ¸k ; k = 1; 2;::: 1 ² Variance V arX = ¸2 : ¸ ² Characteristic Function '(t) = ¸¡it : ² Exponential random variable X possesses memoryless property P (X > t + sjX > s) = P (X > t): ² Typical model: Lifetime in reliability. ¡ x 0 0 1 ¸0 k 0 k ² Alternative parametrization, ¸ as scale. f(xj¸ ) = ¸0 e , EX = k!(¸ ) ; k = 1; 2;::: , V arX = (¸0)2: 1.3 Double Exponential DE(¹; σ) Distribution Random variable X has double exponential DE(¹; σ) distribution if its density and cdf are given by 1 1 ³ ´ f(xj¹; σ) = e¡jx¡¹j/σ;F (xj¹; σ) = 1 + sgn(x ¡ ¹)(1 ¡ e¡jx¡¹j/σ ; x; ¹ 2 R; σ > 0: 2σ 2 2k ¹2k ¹2(k¡1)σ2 σ2k 2k+1 2k+1 ² Moments: EX = ¹, EX = [ (2k)! + (2(k¡1))! + ::: 1 ](2k)! EX = ¹ (2k + 1)! ² Variance V arX = 2σ2: ei¹t ² Characteristic Function '(t) = 1+(σt)2 : 1 1.4 Normal (Gaussian) N (¹; σ2) Distribution Random variable X has normal N (¹; σ2) distribution with parameters ¹ 2 R (mean, center) and σ2 > 0 (variance) if its density is given by 2 1 ¡ (x¡¹) f(xj®; ¯) = p e 2σ2 ; ¡ 1 < x < 1 2¼σ2 ² Moments: EX = ¹; E(X ¡ ¹)2k¡1 = 0; E(X ¡ ¹)2k = (2k ¡ 1)(2k ¡ 3) ::: 5 ¢ 3 ¢ 1 ¢ σ2k = (2k ¡ 1)!!σ2k; k = 1; 2;::: 2 2 ² Characteristic function '(t) = ei¹t¡t σ =2: 2 X¡¹ 1 ¡ x ² Z = has standard normal distribution Á(x) = p e 2 : The cdf of standard normal distribution σ 2¼ R x is a special function ©(x) = ¡1 Á(t)dt and its values are tabulated in many introductory statistical texts. ² Standard half-Normal distribution is given by f(x) = 2Á(x)1(x ¸ 0): 2 1.5 Chi-Square Ân Distribution 2 Random variable X has chi-square Ân distribution distribution with n degrees of freedom if its density is given by ( 1 xn=2¡1e¡x=2; x > 0 f(x) = 2n=2¡(n=2) 0; else ² Moments: EXk = n(n + 2) ::: (n + 2(k ¡ 1)); k = 1; 2;:::: ² Expectation EX = n, Variance V arX = 2n, and Mode m = n ¡ 2; n > 2: ² Characteristic function '(t) = (1 ¡ 2it)¡n=2: 2 ² Noncentral chi-square ncÂn distribution is the distribution of sum of squares of n normals: N (¹i; 1): P 2 2 The non-centrality parameter is ± = i ¹i : Density of ncÂn distribution involves Bessel function of the 2 2 first kind. The simplest representation for the cdf of ncÂn is an infinite Poisson mixture of central  ’s where degrees of freedom are mixed: X1 (±=2)i F (xjn; ±) = e¡±=2P (Â2 · x): i! n+2i i=0 2 ² Ân is G(n=2; 2) or in alternative parametrization Gamma(n=2; 1=2): 2 2 2 ² Inverse Ân, inv ¡ Ân is defined as IG(n=2; 2) or IGamma(n=2; 1=2): Scaled inverse Ân, inv ¡ Â2(n; s2) is IG(n=2; 2=(ns2)) or IGamma(n=2; ns2=2): 1.6 Chi Ân Distribution Random variable X has chi-square Ân distribution distribution with n degrees of freedom if its density is given by ( 1 xn¡1e¡x2=2; x > 0 f(x) = 2n=2¡1¡(n=2) 0; else 2 k=2 n+k k 2 ¡( 2 ) ² Moments: EX = ¡(n=2) ; k = 1; 2;:::: h i2 ¡((n+1)=2) ² Variance V arX = n ¡ 2 ¡(n=2) . p 1 P1 (i 2t)k ² Characteristic function '(t) = ¡(n=2) k=0 k! ¡((n + k)=2): ² Ân for n = 2 is Raleigh Distribution, for n = 3 Maxwell distribution. 1.7 Gamma G(®; ¯) Distribution Random variable X has gamma G(®; ¯) distribution with parameters ® > 0 (shape) and ¯ > 0 (scale) if its density is given by ( 1 ®¡1 ¡x=¯ ½ ® x e ; x ¸ 0 0; x · 0 f(xj®; ¯) = ¡(®)¯ F (xj®; ¯) = 0; else inc¡(xj®; ¯); x ¸ 0 ² Moments: EXk = ®(® + 1) ::: (® + k ¡ 1)¯k; k = 1; 2;::: ² Mean EX = ®¯; Variance V arX = ®¯2: ² Mode m = (® ¡ 1)¯: 1 ² Characteristic function '(t) = (1¡it¯)® : ba a¡1 ¡bx k a(a+1):::(a+k¡1) ² Alternative parametrization, Gamma(a; b): f(xja; b) = ¡(a) x e ; x ¸ 0; EX = bk ; k = 1; 2; : : : V arX = a=b2: 2 ² Special cases E(¸) ´ G(1; 1=¸) ´ Gamma(1; ¸) and Ân ´ G(n=2; 2) ´ Gamma(n=2; 1=2): d 1 P® ² If ® is an integer, Ga(®; ¯) = ¡ ¯ i=1 log(U): If ® < 1, then if Y »Be(®; 1 ¡ ®) and Z »E(1), X = YZ »Ga(®; 1): 1.8 Inverse Gamma IG(®; ¯) Distribution Random variable X has gamma IG(®; ¯) distribution with parameters ® > 0 and ¯ > 0 if its density is given by ( 1 e¡1=(¯x); x ¸ 0 f(xj®; ¯) = ¡(®)¯®x®+1 0; else ² Moments: EXk = f(® ¡ 1)(® ¡ 2) ::: (® ¡ k)¯kg¡1; k = 1; 2;::: (® > k): 1 1 ² Mean EX = ¯(®¡1) ; ® > 1, Variance V arX = (®¡1)2(®¡2)¯2 ; ® > 2 1 ² Mode m = (®+1)¯ : ² Characteristic function '(t) = : ² If X »G(®; ¯) then X¡1 »IG(®; ¯): ba ¡b=x k bk ² Alternative parametrization, IGamma(a; b). f(xja; b) = ¡(a)xa+1 e ; x ¸ 0; EX = (a¡1):::(a¡k) ; k = 1; 2; : : : V arX = b2=((a ¡ 1)2(a ¡ 2)): 1.9 Beta Be(®; ¯) Distribution Random variable X has beta Be(®; ¯) distribution with parameters ® > 0 and ¯ > 0 if its density is given by 3 ( 8 ¡(®+¯) < 0; x · 0 x®¡1(1 ¡ x)¯¡1; 0 · x · 1 f(xj®; ¯) = ¡(®)¡(¯) F (xj®; ¯) = incBeta(xj®; ¯); 0 · x · 1 : 0; else 1; x ¸ 1 k ¡(®+k)¡(®+¯) ®(®+1):::(®+k¡1) ² Moments: EX = ¡(®)¡(®+¯+k) = (®+¯)(®+¯+1):::(®+¯+k¡1) : ® ®¯ ² Mean EX = ®+¯ ; Variance V arX = (®+¯)2(®+¯+1) : ®¡1 ² Mode m = ®+¯¡2 ; if ® > 1; ¯ > 1 ¡(®+¯) P1 (it)k ¡(®+k) ² Characteristic function '(t) = ¡(®) k=0 k! ¡(®+¯+k) ² If X1;X2;:::;Xn is a sample from the uniform U(0; 1) distribution, and X(1);X(2);:::;X(n) its order statistics. Then X(k) »Be(k; n ¡ k + 1): ² Be(1; 1) ´ U(0; 1); Be(1=2; 1=2) ´ Arcsine Law 1.10 Student tn Distribution Random variable X has Student tn distribution with n degrees of freedom if its density is given by µ ¶ n+1 n+1 2 ¡ 2 ¡( 2 ) x fn(x) = p n 1 + ; ¡ 1 < x < 1: n¼ ¡( 2 ) n k ¡(n=2¡k)¡(k+1=2) 2k pn 2k¡1 ² Moments: EX = ¼ ¡(n=2) ; 2k < n: EX = 0; k = 1; 2;:::: ² V arX = n ; n > 2 n¡2 p p ¡ njtj P ¡ ¢ p ² Characteristic function '(t) = ¼ ¡(m) e m¡1(2k)! m¡1+k (2 njtj)m¡1¡k; ¡(n=2) 22(m¡1)(m¡1)! k=0 2k n+1 for m = 2 integer. ² t2k¡1; k = 1; 2;::: is infinitely divisible. p 2 ² If Z »N (0; 1) and Y » Ân, then X = Z= Y=n has tn distribution. ² t1 ´ Ca(0; 1): 1.11 Cauchy Ca(a; b) Distribution Random variable X has Cauchy Ca(a; b) distribution with center a 2 R and scale b 2 R+ if its density is given by 1 1 b f(x) = = ; ¡ 1 < x < 1: x¡a 2 2 2 b¼ 1 + ( b ) ¼(b + (x ¡ a) ) If a = 0 and b = 1, the distribution is called standard Cauchy. The cdf is 1 x ¡ a F (x) = 1=2 + arctan ; ¡ 1 < x < 1: ¼ b ² Moments: No finite moments. Value x = a is the mode and median of the distribution. ² Characteristic function. '(t) = eiat¡bjtj: Cauchy distribution is infinitely divisible. Since '(t) = n ('(t=n)) , if X1;:::;Xn are iid Cauchy, X¹ is also a Cauchy. ² If Y; Z are independent standard normal N (0; 1) then X = Y=Z has Cauchy Ca(0; 1) distribution. If a variable U is uniformly distributed between ¡¼=2 and ¼=2, then X = tan U will follow standard Cauchy distribution. ² The Cauchy distribution is sometimes called the Lorentz distribution (especially in engineering com- munity). 4 1.12 Fisher Fm;n Distribution Random variable X has Fisher Fm;n distribution with m and n degrees of freedom if its density is given by mm=2nn=2xm=2¡1 ¡(m+n)=2 f(xjm; n) = B(m=2;n=2) (n + mx) ; x > 0: The cdf F (x) is of no closed form. ¡ ¢ k n k ¡(m=2+k)¡(n=2¡k) ² Moments E(X ) = m ¡(m=2)¡(n=2) ; 2k < n: n 2n2(m+n¡2) ² Mean EX = n¡2 ; n > 2; Variance V arX = m(n¡2)2(n¡4) ; n > 4: ² Mode n=m ¢ (m ¡ 2)=(n + 2) 1.13 Logistic Lo(¹; σ2) Distribution Random variable X has logistic Lo(¹; σ2) distribution with parameters ¹ 2 R and σ2 > 0 if its density is given by h ¡ ¢i ¼ exp ¡ p¼ x¡¹ 2 3 σ f(xj¹; σ ) = p n h ¡ ¢io2 σ 3 1 + exp ¡ p¼ x¡¹ 3 σ 2 ² Expectation: EX = ¹ Variance: V arX =p σ : p it¹ σ 3 σ 3 ² Characteristic function '(t) = e ¡(1 ¡ i ¼ t)¡(1 + i ¼ t): ² Used in modeling in biometry (drug response, toxicology, etc.) ² Alternative parametrization 1.14 Lognormal LN (¹; σ2) Distribution Random variable X has lognormal LN (¹; σ2) distribution with parameters ¹ 2 R and σ2 > 0 if its density is given by ( (ln(x)¡¹)2 1 ¡ p e 2σ2 ; x > 0 f(xj®; ¯) = xσ 2¼ 0; else k 1 2 4 ² Moments: EX = expf 2 k σ + k¹g: 4 4 ² Variance V arX = eσ +¹[eσ ¡ 1]: 2 ² Mode e¹¡σ ² If Z »N (0; 1) then X = expfσ2Z + ¹g » LN (¹; σ2).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us