Audio Data Analysis

Audio Data Analysis

Audio data analysis CES Data Scientist Slim ESSID Audio Data Analysis and Signal Processing team [email protected] http://www.telecom-paristech.fr/~essid Credits O. GILLET, C. JODER, N. MOREAU, G. RICHARD, F. VALLET, … Slim Essid About “audio”… ►Audio frequency: the range of audible frequencies (20 to 20,000 Hz) Threshold of pain Audible sound Minimal audition threshold CC Attribution 2.5 Generic Frequencies (kHz) 2 CES Data Science – Audio data analysis Slim Essid About “audio”… ►Audio content categories To ad -minis -ter medi Speech Music Environmental 3 CES Data Science – Audio data analysis Slim Essid About “audio”… ►An important distinction: speech vs non-speech Speech signals Music & non-speech (environmental) “Simple” production model: No generic production model: the source-filter model “timbre”, “pitch”, “loudness”, … Image: Edward Flemming, course materials for 24.910 Topics in Linguistic Theory: Laboratory Phonology, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on 05 May 2012 4 CES Data Science – Audio data analysis Slim Essid About “audio”… ►Different research communities Music Information Speech Research Signal representations Music Speech classification recognition (genre, mood, …) Audio coding Speaker Transcription Source recognition separation Speech Rhythm Sound enhancement analysis synthesis … … … Machine Listening / Computer audition 5 CES Data Science – Audio data analysis Slim Essid About “audio”… ►Research fields Acoustics Linguistics Psychology Psychoacoustics Audio content Musicology analysis Signal Knowledge processing engineering Machine learning Databases Statistics 6 CES Data Science – Audio data analysis Slim Essid About “audio”… ►Research fields Acoustics Linguistics Psychology Psychoacoustics Audio content Musicology analysis Signal Knowledge processing engineering Machine learning Databases Statistics 7 CES Data Science – Audio data analysis Slim Essid Why analyse audio data? . For archive management, indexing » Broadcast content segmentation and classification: speech/music/jingles…, speakers » Music autotagging: genre (classical, jazz, rock,…), mood, usage… » Search engines . For broadcasters » Music/effects/speech excerpt search » Playlist generation, Djing 9 CES Data Science – Audio data analysis Slim Essid Why analyse audio data? . For designers and producers » Audio sample search » Music transcription (beat, rhythm, chords, notes) » Broadcast content monitoring, plagiarism detection, hit prediction . For end-users » Content-based search (shazam++) » Non-linear and interactive content consuming (“skip intro”, “replay the chorus”, Karaoke: “remove the vocals”…) » Recommendation » Personalised playlist generation 10 CES Data Science – Audio data analysis Slim Essid Audio-driven multimedia analysis . Motivation for audio-driven content analysis » critical information is conveyed by the audio content » audio and visual information play complementary roles for the detection of key concepts/events . Video examples 11 CES Data Science – Audio data analysis Slim Essid Audio-driven multimedia analysis ►Video examples Use audio-based laughter detection • Applause detection • Keyword spotting: “Goal!” • Cheering detection • Sound loudness • Applause/cheering detection 12 CES Data Science – Audio data analysis Slim Essid Audio-driven multimedia analysis ►Key audio-based components Speech activity Jingle Emotion detection detection recognition Speech/Music/ Applause/Laughter/ Speaker Social signal … identification processing: detection roles, interactions,… Speaker diarization: “Who spoke when?” Speech-to-text transcription Natural Music language classification processing genre, mood, … At the heart of all components: a classification task (supervised or unsupervised) 13 CES Data Science – Audio data analysis Slim Essid General classification architecture ►Overview Development Audio segment Feature vectors database Feature Classifier extraction training TRAINING/DEVELOPMENT PHASE (AT THE LAB.) Decision functions Testing database Feature extraction Classification Segment identified TESTING/EVALUATION PHASE (EXPLOITATION) 15 CES Data Science – Audio data analysis Slim Essid Classification architecture ►Feature extraction process Feature Temporal Preprocessing computation integration Motivation: Exercise In Python: . signal denoising/enhancement . information rate reduction, eg. subsampling - load an audio file; - normalise it; . normalisation, eg.: - visualise it. Use librosa 16 CES Data Science – Audio data analysis Slim Essid Classification architecture ►Feature extraction process Feature Temporal Preprocessing computation integration Relies on audio signal processing techniques 17 CES Data Science – Audio data analysis Slim Essid Audio signal analysis ►Short-Term analysis windows Drawing by J. Laroche, modified 18 CES Data Science – Audio data analysis Slim Essid Signal framing Attack Sustain Release N H m m+1 m+2 » Static temporal segmentation » Dynamic temporal segmentation 19 CES Data Science – Audio data analysis Slim Essid Feature types . Temporal features: extracted directly from the waveform samples . Spectral features: extracted from a frequential representation of the signal . Perceptual features: extracted using a perceptual representation based on psychoacoustic considerations 20 CES Data Science – Audio data analysis Slim Essid Temporal features - ZCR Zero Crossing Rates Characterises noisy and transient sections 21 Spectral analysis ►Discrete Fourier Transform In practice: computed using the Fast Fourier Transform (FFT) 23 CES Data Science – Audio data analysis Slim Essid Discrete Fourier Transform (DFT) ►Important properties . Being a discrete time Fourier Transform, the DFT is periodic, with 푓 period 1 (in reduced frequency 푓 = ; 푓푠 : sampling frequency) 푓푠 . For signals 푥(푛) and 푦 푛 ; 푛 ∈ {0, … , 푁 − 1} Property Numerical series DFT Linearity {푎푥 푛 + 푏푦 푛 } {푎푋 푘 + 푏푌 푘 } ∗ Hermitian symmetry 푥 푛 real 푋 푘 = 푋 (−푘) 2푗휋푘 Time translation 푥(푛 − 푛0) − 푛0 푋 푘 푒 푁 Convolution 푥 푛 ⋆ 푦 푛 푋 푘 푌(푘) ≜ 푥 푘 푦(푛 − 푘) 푘 ∗ ∗ Conjugation {푥 푛 } {푋 −푘 } 24 CES Data Science – Audio data analysis Slim Essid Spectral analysis ►Spectral analysis by Short-Term Fourier Transform (STFT) Drawing by J. Laroche 25 CES Data Science – Audio data analysis Slim Essid Spectral analysis ►Violin excerpt: 20-ms overlapping windows ( 푠푟 = 44.1kHz ; 푁 = 882 samples ) 26 CES Data Science – Audio data analysis Slim Essid Spectral analysis ►Spectrogram C note (262 Hz) produced by a piano and a violin Temporal signal Spectrogram From M. Mueller & al. « Signal Processing for Music Analysis, IEEE Trans. On Selected topics in Signal Processing », October 2011. 27 CES Data Science – Audio data analysis Slim Essid Spectral analysis ►Exercise In Python: . Compute short-term spectra of an audio signal using FTT . Compute and display spectrogram . Use » scipy.fftpack » librosa 28 CES Data Science – Audio data analysis Slim Essid Spectral analysis ►Limitations of the spectrogram representation . Large representation » Typically 512 coefs every 10 ms » High dimensionality . Much detail » Redundant representation » High-level features (pitch, vibrato, timbre) are not highlighted Still a low-level representation, not yet a model 29 CES Data Science – Audio data analysis Slim Essid The source-filter model . Distinction between: » source: excitation fine spectral structure » filter: resonator coarse structure Source signal Speech (Vocal folds) Resonator (Vocal tract) Filter X(f) H(f) Y(f) 30 CES Data Science – Audio data analysis Slim Essid Cepstrum ►Principle . Source-filter model: . In the frequency domain: . By inverse DFT: where : real cepstrum definition deconvolution is thus achieved: filter is separated from excitation . First few cepstral coefficients » low quefrency: “slow iDFT waves” » represent the filter spectral envelope . Next coefficients represent the source fine spectral structure 31 CES Data Science – Audio data analysis Slim Essid Cepstral representations ►MFCC: Mel Frequency Cepstral Coefficients Audio frame Mel scale DFT Magnitude spectrum Triangular filter banc in Mel scale 32 CES Data Science – Audio data analysis Slim Essid Cepstral representations ►MFCC: Mel Frequency Cepstral Coefficients Audio frame DFT Magnitude spectrum Triangular filter banc in Mel scale 33 CES Data Science – Audio data analysis Slim Essid Cepstral representations ►MFCC: Mel Frequency Cepstral Coefficients Audio frame DFT Discrete Cosine Transform: • nice decorrelation properties Magnitude spectrum (like PCA) • yields diagonal covariance Triangular filter banc matrices in Mel scale Log DCT 13 first coefs (in general) 34 CES Data Science – Audio data analysis Slim Essid Cepstral representations ►MFCC: Mel Frequency Cepstral Coefficients Audio frame DFT First and second derivatives: speed and acceleration Magnitude spectrum Coarse temporal modelling Triangular filter banc in Mel scale Log DCT 39-coefficient 13 first coefs dt feature vector (in general) dt² 35 CES Data Science – Audio data analysis Slim Essid About MFCCs ►… very popular! . In speech applications: » Well justified: source-filter model makes sense » Nice properties from a statistical modelling viewpoint: decorrelation » Effective: state-of-the-art features for speaker and speech tasks . In general audio classification: » “Source-filter” model does not always hold » Still, MFCCs work well in practice! they are the default choice 36 CES Data Science – Audio data analysis Slim Essid MFCC ►Exercise

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    42 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us