
Research, Design, and Implementation of Virtual and Experimental Environment for CAV System Design, Calibration, Validation and Verification THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Shlok Goel, B.S. Graduate Program in Mechanical Engineering The Ohio State University Thesis Committee: Dr. Shawn Midlam-Mohler, Advisor Dr. Lisa Fiorentini Copyright by Shlok Goel 2020 Abstract The EcoCAR Mobility Challenge is the current iteration of the Advanced Vehicle Technology Competitions that challenges twelve universities across North America to re-engineer a 2019 Chevrolet Blazer into a connected and automated vehicle. The competition goal is to design, prototype, test, and validate a SAE Level 2 advance driver assistance system. This work outlines the development process of a SAE Level 2 perception system. The process began by defining system and component level requirements that iniated a sophisticated sensor and hardware selection process. Then to protoype, test, and validate the system, a V-model approach was followed, which included validation and verification of the system in multiple test environments. The role of each test environment in the validation process along with its advantages and shortcomings is discussed in detail, followed by the evolution of the perception system throughout Year 1 and Year 2 of the competition. Next, three case studies outlining the different subsystems in the perception controller: the I/O layer, the fault diagnostics, and sensor calbration are discussed. Each of these sub-algorithms used various modeling environment to increase the realiability and accuracy of the perception system. This work serves as the foundation of the connected and automated vehicle perception system and will be vital in the implementation of advance driver assistance features such as adaptive cruise control, lane centering control, and lane change on demand in future years of this competition. i Dedication This work is dedicated to my parents who have constantly strived to inculcate the value of education and supported me in my passion to pursue engineering. ii Acknowledgements I would like to begin by thanking my advisor, Prof. Shawn Midlam-Mohler for giving me the opportunity to work on the OSU EcoCAR team, and for his constant guidance throughout my two years as a graduate student. I would like to thank my CAV Co-Lead: Akshra Ramakrishnan for her constant support on this document and in this research. Kristina Kuwabara, without whom, the work compiled in this thesis would have been incomplete. I would like to acknowledge Evan Stoddart for being a great mentor and assisting me at the start of my EcoCAR journey. I would like to thank Michael Schoenleb and Subash Chebolu, for their constant help and eagerness to learn and contribute to the development of the CAV Perception System. I thank Phillip Dalke and Kerri Loyd for their mechanical and electrical assistance in setting up the mule-vehicle for CAV testing. Finally, I would like to thank General Motors, Mathworks, and Argonne National Lab for giving me the opportunity to develop my leadership and engineering skills through the EcoCAR program. iii Vita 2014…………………………………………………...Delhi Public School RK Puram, New Delhi 2018…………………………………...B.Tech. Mechanical Engineering, VIT University, Vellore 2020………………………………….…M.S. Mechanical Engineering, The Ohio State University Fields of Study Major Field: Mechanical Engineering iv Table of Contents Abstract ................................................................................................................................ i Dedication ........................................................................................................................... ii Acknowledgements ............................................................................................................ iii Vita ..................................................................................................................................... iv Fields of Study ................................................................................................................... iv List of Tables ..................................................................................................................... ix List of Figures .................................................................................................................... xi Appendix: List of Symbols and Abbreviations ................................................................ xvi Introduction ................................................................................................. 1 1.1 EcoCAR Mobility Challenge .................................................................................. 2 1.2 Vehicle Architecture ............................................................................................... 4 1.3 Project Objective .................................................................................................... 7 1.4 Project Timeline...................................................................................................... 7 Literature Review ........................................................................................ 9 2.1 Introduction to Autonomous Vehicles .................................................................... 9 2.2 Advance Driver Assistance Systems (ADAS) ...................................................... 11 v 2.3 ADAS Features ..................................................................................................... 12 2.4 Challenges with ADAS ........................................................................................ 15 2.5 Model Based Design ............................................................................................. 19 2.6 XIL Testing ........................................................................................................... 19 Experimental Design and Process ............................................................. 21 3.1 System Requirements ........................................................................................... 21 3.2 Sensor Suite Selection .......................................................................................... 22 3.3 Compute System Selection ................................................................................... 33 3.4 Software Development Process ............................................................................ 37 3.5 CAV System Overview ........................................................................................ 41 XIL Testing Environment .......................................................................... 45 4.1 Introduction........................................................................................................... 45 4.2 Model-in-the-Loop (MIL) .................................................................................... 47 4.3 Hardware-in-the-Loop (HIL) ................................................................................ 54 4.4 Component-in-the-Loop (CIL) ............................................................................. 56 4.5 Vehicle-in-the-Loop (VIL) ................................................................................... 57 4.6 Evolution of Perception System in XIL................................................................ 58 Input/Output Layer .................................................................................... 62 5.1 I/O Layer Requirements ....................................................................................... 62 vi 5.2 Design of I/O Layer in Simulink .......................................................................... 63 5.3 Validation of Simulink I/O in HIL ....................................................................... 67 5.4 Shortcoming of Simulink I/O in CIL/VIL ............................................................ 68 5.5 Change in Software Stack ..................................................................................... 69 5.6 Design of I/O Layer in Python.............................................................................. 69 5.7 Validation of Python I/O in CIL/VIL ................................................................... 74 5.8 CAV- PCM Interface ............................................................................................ 75 Fault Diagnostics ....................................................................................... 77 6.1 Diagnostic Type .................................................................................................... 77 6.2 Diagnostic Algorithm ........................................................................................... 79 6.3 Sensor Diagnostic Overview ................................................................................ 81 6.4 Diagnostics in XIL ................................................................................................ 84 6.5 Summary ............................................................................................................... 95 Sensor Calibration ..................................................................................... 96 7.1 Motivation for Sensor Calibration ........................................................................ 96 7.2 Front Camera Calibration ....................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages137 Page
-
File Size-