Dipole Magnetic Field

Dipole Magnetic Field

Earth’s Dipole Magnetic Field Ling-Hsiao Lyu Institute of Space Science, NCU Dipole Magnetic Field −M • Earth’s dipole magnetic field: B = E (e 2cosθ + e sinθ) r 3 r θ 2 • The dipole magnetic field line equation: r = req sin θ • We define the L value to be L = req / RE B • The dipole magnetic field: − 0 B = 3 (er 2cosθ + eθ sinθ) −5 (r / RE ) where B0 ≈ 3 × 10 T = 0.3 Gauss • The dipole magnetic field line equation of a given L 2 value is r = LRE sin θ 2 2 2 3/2 3 • The L value of a given r (x + y + z ) / RE L = 2 = 2 2 2 satellite location ( x , y , z ) is RE sin θ (x + y ) / RE • The ionospheric foot point ( r i ono = R E ) latitude π 1 = L sin2 θ ⇒ θ = sin−1(1 / L ) ⇒ λ = − sin−1(1 / L ) iono iono iono 2 2 Dipole Magnetic Field Line • How to determine the dipole magnetic field line equation: −M B = E (e 2cosθ + e sinθ) r 3 r θ dr rdθ dr rdθ r sin2 θ = ⇒ = ⇒ d lnr = d ln(sin2 θ) ⇒ = Br Bθ 2cosθ sinθ req 1 2 r(θ) = req sin θ 其中,積分過程中,我們取 r eq = r ( θ = 90 ° ) ,也就是這根磁場線通過磁赤道 面(magnetic equatorial plane)時與地心的距離。當我們說一根磁場線 通過磁赤道面時的位置,距離地心三萬八千三百公里時,你聽起來不會有 任何感覺。可是如果我改說,r eq 約為6個地球半徑,你就很有感覺了。所 以太空物理學家,常將 r e q 改寫為 r e q = L R E 。並用 L-shell 來描述所有 req = LRE 的磁偶極場線所組成的一圈環狀結構。 3 Earth’s dipole magnetic field 發現者 William Gilbert (1544‐1603) the royal physician to Queen Elizabeth I http://www.plasma-universe.com/Terrella Earth’s dipole magnetic field 強度的測量者 Gaussian distribution Normal distribution Carl Friedrich Gauss (1777–1855), painted by Christian Albrecht Jensen B0 ≈ 0.3 Gauss In 1831 Gauss developed a fruitful collaboration with the physics professor Wilhelm Weber, leading to new knowledge in magnetism (including finding a representation for the unit of magnetism in terms of mass, length and time) and the discovery of Kirchhoff's circuit laws in electricity. 當電荷不累積時,才成立。 NRL Plasma Formulary http://wwwppd.nrl.navy.mil/nrlformulary/ The Unit of the Magnetic Field • SI Units B = ∇ × A ⇒ O(B) = O(A / L) O(eA) = O(mv) ⇒ O(B) = O(M / QT ) • Gaussian Units B = ∇ × A ⇒ O(B) = O(A / L) eA O( ) = O(mv) & O(e) = O( ML3 / T ) c M (L / T )2 M ⇒ O(B) = O(A / L) = O[ ] = O( ) L ML3 / T LT Gyro Motion • Equations of Motion of a charge particle in a uniform magnetic field B = ez B dx = v dt dv m = q v × B dt • Home Work 1.1: For a given set of initial conditions: At t = 0 , x = y = z = 0 & v x = v 0 & vy = vz = 0 Solve the above equations of motion, find the solutions of x(t), y(t),vx (t),vy (t) 8 Gyro Frequency & Gyro (Larmor) Radius eB • Electron gyro frequency Ωce = me eB Joseph Larmor • Ion gyro frequency Ωci = (1857-1942) mi • Gyro radius of an electron v⊥ v⊥ me rLe = = with perpendicular velocity v⊥ Ωce eB • Gyro radius of an ion v⊥ v⊥ mi rLi = = with perpendicular velocity v⊥ Ωci eB • Gyro radius of a thermal vthe/thi kBTe/i me/i re/i = = electron/ion Ωce/ci eB 9 Joseph Larmor (1857‐1942) 誤判 • Larmor opposed Albert Einstein's theory of relativity • Larmor rejected both the curvature of space and the special theory of relativity, to the extent that he claimed that an absolute time was essential to astronomy (Larmor 1924, 1927). • Larmor held that matter consisted of particles moving in the aether. 貢獻 • Larmor believed the source of electric charge was a "particle" (which as early as 1894 he was referring to as the electron). • Larmor held that the flow of charged particles constitutes the current of conduction (but was not part of the atom). • Larmor calculated the rate of energy radiation from an accelerating electron. • Larmor explained the splitting of the spectral lines in a magnetic field by the oscillation of electrons. • In 1919, Larmor proposed sunspots are self-regenerative dynamo action on the Sun's surface. Three Cyclic Motions -- Action principle & three adiabatic motions 11 Action Principle • Action variable ( J = ∫ p dq ) is adiabatic invariant under slow change of parameters (Goldstein, 1980). • Action of a quasi-periodic motion is conserved if parameters, which affect the periodic motion, are nearly steady and nearly uniform. • Three periodic motions may be found when a charge particle moving in a dipole magnetic field: 先教 (1) gyro motion around the magnetic field 先教 (2) bounce motion in a magnetic mirror machine (dipole field) 以後教 (3) periodic drift motion around a magnetic mirror machine 12 The First Adiabatic Invariant • For gyro motion around the magnetic field v⊥ p = mv⊥ dq = rgyrodθ = dθ Ωc v m J = pdq = mv ⊥ dθ = 2πmv2 1 ∫ ∫ ⊥ Ω ⊥ eB c • If within one gyro period and two gyro radii, the changes on the magnetic field and the particle speed are negligible, the is conserved. J1 13 Magnetic Moment • By definition magnetic momentum of a single charged particle is dQ 2 e v⊥ 2 µ = IA = πrgyro = π( ) dt 2π / Ωc Ωc where Ωc = eB / m it yields 1 2 mv⊥ 2 W⊥ 2 m 4πm µ = = and J = 2πmv = µ B B 1 ⊥ eB e If the J 1 is conserved, the µ is conserved. 14 the first-order approximation of grad-B drift • A quick way, but incorrect in physics, to get the first-order approximation of grad-B drift: Consider a force due to “gradient of perpendicular kinetic energy” W mv2 F = −∇W = −∇(µB) = −µ∇B = − ⊥ ∇B = − ⊥ ∇B ⊥ B 2B (−∇W ) × B mv2 (−∇B) × B mv2 (−∇ B) × B v = ⊥ = ⊥ = ⊥ ⊥ drift qB2 2B qB2 2B qB2 15 The Second Adiabatic Invariant • For bounce motion in a magnetic mirror machine p = mv dq = ds J = mv ds 2 ∫ • If within one bounce period the changes on the magnetic field configuration that can affect the bounce motion are negligible, the J 2 is conserved. • What is bounce motion? 1 1 2 1 2 2 W mv mv constant µ = mv⊥ / B = constant = ⊥ + = 2 2 2 v ⊥ increases with increasing B v decreases with increasing v⊥ Bounce motion occurs at strong B, such that v = 0 16 Bounce Motion & Loss Cone Distribution • Show that the magnetic field increases with decreasing the cross section of the magnetic flux tube • Show that the mirror point of a given magnetic field line depends on the pitch angle α e q of the particle at the equator, where the pitch angle is the angle between the particle’s velocity and the B-field line. 2 1 2 1 2 1 2 veq 1 W = mv⊥ eq + mveq = mv⊥ eq (1+ 2 ) = µBeq ( 2 ) 2 2 2 v⊥ eq sin α eq 1 W = mv2 = µB ⇒ B / B = sin2 α ≤ 1 2 ⊥ mirror mirror eq mirror eq Particles will be lost in the ionosphere if Bmirror > Bionosphere How to determine Beq & Bionosphere along a given magnetic field line? 17 How to Determine Beq & Bionosphere & Loss-cone Angle of a Given Magnetic Field Line? −B B = 0 (e 2cosθ + e sinθ) • The dipole magnetic field: 3 r θ (r / RE ) 3 • Magnetic field at the equator of a given L: Beq = B0 / L −1 • The ionospheric foot point co-latitude θiono = sin (1 / L ) −B0 L − 1 1 Biono = 3 (er 2cosθiono + eθ sinθiono ) = −B0 (er 2 + eθ ) (riono / RE ) L L 3 L = 1 Biono = B0 ⇒ Biono = B0 4 − check results: L L = 3 Biono = 3B0 < 2B0 2 Beq Beq 1 L sin α eq = ≥ = 3 Bmirror Biono L 4L − 3 1 1 ⇒ sinα = eq−loss− cone 4 L L(4L − 3) 18 Discussion • 其實上一頁有些計算並不重要。在此舉這些例子,只是想要加 深各位同學對 Earth’s dipole magnetic field, magnetic field line, gyro motion, bounce motion, 等等的印象。 • 未來要介紹被太陽風吹得變形的外磁層。不過為了說明整個變 形的過程,我們需要先介紹一些簡單的Charge particle drift motion and the diamagnetic current in the plasma. 希望各位 的電漿物理導論,先學了一些,我們就可以教得快一點。 • 地球 dipole magnetic field 會隨時間改變 ,甚至發生 geomagnetic reversal • Dynamo Theory:解釋產生磁場以及磁場反轉的過程 • 大西洋中洋脊,記錄了地球磁場反轉的情形,也因此造成南大 西洋地表與電離層磁場過弱現象 (South Atlantic Anomaly)。因 此常在劇烈磁暴後,出現 trapped energetic particles. • 紅字部份,可上google 查詢更多資訊,包括圖片與影片。 北極附近的磁南極(S)過去200年的動向 位在西伯利亞(東半球)的可能年代約為 西元0、800、 1600、 2300年(前後200年)(我猜的!) 位在加拿大(西半球)的可能年代約為 西元400、1200、 1900年(前後200年)(我猜的!) 北極附近的磁南極(S)過去200年的 南極附近的磁北極(N)過去200年 動向:由低緯移動到高緯 的動向:由高緯移動到低緯 北極附近的磁南極(S)未來50年的動向:快速跨越地理北極 地理北極與磁南極的夾角為 19.1º (100年前) 11.9º (25年前) < 7.3º (現在) North Magnetic Pole (2001) 81.3°N 110.8°W (2004 est) 82.3°N 113.4°W (2005 est) 82.7°N 114.4°W South Magnetic Pole (1998) 64.6°S 138.5°E. (2004 est) 63.5°S 138.0°E (2008 est) 65°S 138°E 地球磁場反轉 (大西洋海底的 證據) 地球磁場反轉 (大西洋海底的 證據) .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us