Fluorescent Lamp Phosphors Is There Still News ?

Fluorescent Lamp Phosphors Is There Still News ?

Fluorescent Lamp Phosphors Is there still News ? Thomas Jüstel [email protected] [email protected] PGS, Seoul, South Korea March 2007 Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 1 Outline 1. State-of-the-Art light sources 2. Overview gas discharge lamps 3. Fluorescent lamps – Phosphor issues – Energy efficiency and price – Lifetime – Miniaturisation – Hg reduction 4. Phosphors for novel discharges – Xe excimer discharge lamps – Zn discharge lamps – InX discharge lamps 5. Conclusions and outlook Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 2 State-of-the-Art Light Sources Light source Electrical input Luminous flux Luminous Color rendering power [W] [lm] efficacy [lm/W] range Incandescent 10 – 1000 80 – 15000 8 – 15 excellent Halogen 20 – 2000 300 – 60000 15 – 30 excellent Low-pressure 7 – 150 350 – 15000 50 – 70 (compact) good Hg discharge 100 (straight) High-pressure 50 – 1000 2000 – 60000 40 – 60 good Hg discharge Metal-halide 20 – 2000 1600 – 24000 80 – 120 good to discharge excellent Low-pressure 20 – 200 2000 – 40000 100 – 200 poor Na discharge High-pressure 40 – 1000 1600 – 14000 40 – 140 moderate Na discharge to good Medium-pressure up to 1000 up to 40000 35 – 45 (lamps) good Xe discharge 4 – 5 (PDPs) White dichromatic 1 – 5 20 - 150 30 - 50 good Inorganic LED > 100 (published) White trichromatic 1 20 – 25 20 – 30 excellent inorganic LED Organic LED 15 mW 0.25 lm 15 - 25 good (at 1000 cd/m2) (per cm2) (per cm2) > 50 (published) Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 3 Overview Gas Discharge Light Sources Mercury Sodium Rare-gas Other Low-pressure High-pressure Low-pressure Low-pressure Low- or high- p < 10 mbar p > 1 bar pressure Hg/Ar or Hg/Ne Hg/Ar Na/Ar/Ne Ne S2 185 + 254 nm bluish white 589 nm 74 nm whitish Compact Metal halide lamps High-pressure Xe/Ne Zn + tubular • Single line emitter FLs NaX/TlX Na/Hg/Xe 147 + 172 nm X = I, Br InX whitish yellow Phosphor • Multi-line emitter Phosphor Phosphor (blends) NaX/TlX/LnX3 (blends) (blends) SnX2 Illumination (X = I, Br and Plasma displ. Special lamps Ln = Dy, Ho, Tm, Sc) Special lamps Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 4 Light Generation in Hg Low-pressure Discharges Desired Atomic Hg Glass Tube Spectrum Emission 254 nm Cap 1,0 0,8 0,6 0,4 0,2 Emission intensity [a.u.] 185 nm Electrode 365 nm 0,0 Phosphor Hg 100 200 300 400 layer atom Electrons Wavelength [nm] Hg discharge (185, 254, 365 nm + visible lines) WPE (trichromatic lamp) ηFL = ηdischarge * ηQD* ηconversion phosphor layer = 0.7 * 0.46 * 0.9 = 0.29 UV-B / UV-A radiation or white light (CRI ~ 70 – 95) Luminous efficiency η = ηFL *LE = 0.29 * (300 – 350 lm/Wopt) ~ 90 – 100 lm/Wel Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 5 Fluorescent Lamps – Phosphor Issues Higher energy efficiency → Particle size control of standard phosphors → Ongoing replacement of halo by tricolor blends Price erosion → Cheaper raw materials (activators) → Less phosphor per lamp (layer thickness) Longer average rated life → Particle morphology and coatings Miniaturization → Particle morphology and coatings → Thermal quenching → Hg consumption Ongoing trend in Hg reduction → Particle coatings, additives Improved color rendering or gamut → Novel phosphors or blends → Particle coatings Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 6 Fluorescent Lamps – Phosphors Rare earth ion s2-or TM ion activated 1,0 Cosmetic/Medical 0,8 Ce3+ Pb2+ 0,6 LaPO4:Ce Sr2MgSi2O7:Pb YPO4:Ce BaSi2O5:Pb 0,4 Emission intensity [a.u.] intensity Emission 2+ 3+ 0,2 Eu Sb Sr (PO ) (F,Cl):Eu Ca (PO ) (F,Cl):Sb 0,0 5 4 3 5 4 3 300 350 400 450 500 550 600 Wavelength [nm] BaMgAl10O17:Eu Illumination Eye-sensitivity curve 3+ 2+ 1,0 Tb Mn LaPO4:Ce,Tb BaMgAl10O17:Eu,Mn 0,8 CeMgAl11O19:Tb Zn2SiO4:Mn 0,6 2+ 3+ Eu3+ LaMgB O :Ce,Tb Ca (PO ) (F,Cl):Sb,Mn Eu Tb 5 10 5 4 3 0,4 LaMgB5O10:Ce,Tb,Mn Emission intensity [a.u.] 0,2 Eu3+ Mn4+ 0,0 300 400 500 600 700 800 Y2O3:Eu Mg4GeO5.5F:Mn Wavelength [nm] (Y,Gd)(V,P)O4:Eu Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 7 Fluorescent Lamps - Phosphor Issues Energy efficiency and price • Selected phosphors operate at physical limit • RE phosphors are superior to s2- and TM ion phosphors • Replace expensive by cheap materials • Further improvements possible by – non linear phosphors – reduced Hg consumption – better adhesion and layer texture – Improved incorporation of activators Consequences • Improve reactivity of starting materials • Reduce particle size • Apply sol-gel chemistry • Improve RE ion distribution by co-precipitates – (Y,Eu)-oxides – (Ce,Gd,Tb)-oxides – (Ce,Gd,Tb)-phosphates • Replace Tb3+ by Mn2+ phosphors • Apply host lattices with an alkaline PZC • Apply particle coatings Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 8 Fluorescent Lamps - Phosphor Issues Lifetime • Sb, Pb, Bi, Zn have affinity to mercury → blackening of phosphor layer • RE ions are relatively stable → enable compact fluorescent lamps • Trend towards higher wall loads ~ 2500 W/m2 due to decreasing tube diameter Consequences • Glass protection by thin Al2O3 layer reduction of Hg/Na exchange Lifetime decreases by increasing wall load • Particle coatings of Pb2+ and TM phosphors • RE phosphors are relatively stable but upon even higher wall loads coatings might be necessary Me2O3 coated BaMgAl10O17:Eu (left image) and BaSi2O5:Pb (right image) Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 9 Fluorescent Lamps - Phosphor Issues Miniaturisation Emission band of BaMgAl10O17:Eu as function of temperature • Lamp temperature depends on lamp diameter 60000 BAM25C • TL 36 mm 40°C BAM75C 50000 BAM150C • TL 26 mm 50°C BAM200C BAM250C 40000 • TL 13 mm 60°C BAM300C BAM330C • PL types 70 – 80°C 30000 • CFL 90 – 110°C • CFL “GLS look-a-like” 100 – 160°C 20000 Emission intensity [a.u.] intensity Emission • QL 200 – 250°C 10000 • Quantum efficiency decreases with increasing temp. 0 • Excitation and emission spectra broadens with 400 450 500 550 Wavelength [nm] increasing temp. Rel. QE of Eu2+ phosphors as function of temperature 1,0 Consequences 0,8 • Phosphors with little thermal quenching • Reduce spectral overlap and Stokes Shift 0,6 • Adjust activator concentration 0,4 (Sr,Ca)2SiO4:Eu 0,2 Relative emission Relative emission intensity (Ba,Sr)2SiO4:Eu BaMgAl10017:Eu 0,0 0 50 100 150 200 250 300 350 Temperature [°C] Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 10 Fluorescent Lamps - Phosphor Issues Hg consumption • Phosphor coated glass consumes up to 5 mg at 10000 h 8 7 by Na/Hg exchange 6 Na • Bare glass even up to 250 mg at 10000 h 5 4 • Phosphors up to 50 µg at 10000 h (HgO formation) 3 tom % A – In particular BaMgAl10O17:Eu is a strong Hg consumer 2 Hg – Incorporation of HgO into BaO conduction layers? 1 0 • Electrode region > 100 µg at 10000 h (Ba-amalgam formation) 0 102030405060708090100110120 penetration depth / [nm] D.A. Doughty, R.H. Wilson and E.G. Thaler, J. Electrochem. Soc. 142 (1995) 3542 Consequences • Since Hg+/2+ adheres to phosphor surface and no neutralisation of Hg ions takes place as phosphor surface is too electronegative (low PZC, e.g. silicates) • Use phosphors with PZC > 8 or apply phosphor coatings to adjust PZC > 8 • Correlation between electronegativity and PZC experimentally proven (Tamatani et al., Toshiba) • PZC in suspension can be measured easily by ESA equipment • Approach has been proven in single component BAM lamps and lamps with different kinds of LaPO4:Ce,Tb (B. Smets, ECS 2000) Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 11 Fluorescent Lamps - Phosphor Issues Color rendering (trichromatic phosphor blends) 0,35 LaPO4:Ce,Tb 0,3 • Fairly good color rendering → Ra = 80 – 85 Y O :Eu • Lack of radiation in the 0,25 2 3 – cyan 500 – 535 nm 0,2 BaMgAl O :Eu – yellow 560 – 580 nm 10 17 0,15 – deep red > 610 nm 0,1 Intensity [W/nm] Consequences 0,05 • Additional broad band phosphors 0 350 400 450 500 550 600 650 700 750 800 – Sr4Al14O25:Eu λ [nm] – Ca (PO ) (F,Cl):Sb,Mn 5 4 3 Emission spectra of BaMgAl10O17:Eu,Mn • Modification of applied trichromatic phosphors Eu2+ 2+ 1,0 Mn – BaMgAl10O17:Eu → BaMgAl10O17:Eu,Mn 0,8 – GdMgB5O10:Gd,Tb → GdMgB5O10:Ce,Tb,Mn → Ra ~ 88 – 98, but luminous efficiency ~ 60 – 80 lm/W 0,6 Typical blend (Osram Patent EP1306885) 0,4 Sr4Al14O25:Eu 28.5 wt-% Relative intensity (Ce,Gd)(Zn,Mg)B5O10:Mn 28.5 wt-% 0,2 Ca5(PO4)3(F,Cl):Sb,Mn 26.9 wt-% 0,0 BaMgAl10O17:Eu 6.1wt-% 350 400 450 500 550 600 CeMgAl11O19:Tb 10.0 wt-% Wavelength [nm] Prof. Dr. T. Jüstel University of Applied Sciences Münster / Philips Research Europe Sheet # 12 Fluorescent Lamps - Phosphor Issues Color rendering (trichromatic phosphor blends) Application of BaMgAl10O17:Eu,Mn (Philips Lighting Maarheeze) Emission spectrum of a blend of Calculated emission spectra of BaMgAl10O17:Eu,Mn + LaPO4:Ce,Tb + Y2O3:Eu fluorescent lamps comprising under 254 nm excitation BaMgAl10O17:Eu,Mn + Yellow + YVO4:Eu 0,20 1,0 Tc (K) Ra LE [lm/W] 258 T2900K 8 x 0.312 T4000K 2900 89 T5000K y 0.268 4000 90 0,8 0,15 T6300K 5000 94 T8000K 6300 94 T8600K 8000 92 0,6 8600 92 0,10 0,4 0,05 0,2 Emission intensity [a.u.] Normalised emission intensity 0,0 0,00 400 450 500 550 600 650 700 750 400 450 500 550 600 650 700 750 Wavelength [nm] Wavelength [nm] Ra ~ 88 Ra > 90 Prof.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    25 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us