Rare Pion Decays and Tests of the Standard Model

Rare Pion Decays and Tests of the Standard Model

Rare pion decays and tests of the Standard Model Dinko Poˇcani´c University of Virginia 7 November 2019 Fundamental Symmetries Research with Beta Decay Institute for Nuclear Theory University of Washington, Seattle 4 { 8 November 2019 Known and measured pion and muon decays decay B:R: physics interest + + π ! µ ν 0:9998770 (4) (πµ2) + −4 µ νγ 2:00 (25) × 10 (πµ2γ) + −4 e ν 1:230 (4) × 10 (πe2) ( `U, BSM (T ,. ) + −7 (π) (π) e νγ 7:39(5) × 10 (πe2γ) ( BSM (T ,. ), FA ; FV ,. 0 + −8 π e ν 1:036 (6) × 10 (πe3) ( q`U(Vud ), BSM loops + + − −9 e νe e 3:2 (5) × 10 (πe2ee) π0 ! γγ 0:98798 (32) ( χ anomaly e+e−γ 1:198 (32) × 10−2 (Dalitz) e+e−e+e− 3:14 (30) × 10−5 e+e− 6:2 (5) × 10−8 µ+ ! e+νν¯ ∼ 1:0 (Michel) ( BSM weak int. terms e+ννγ¯ 0:014 (4) (RMD) e+νν¯e+e− 3:4 (4) × 10−5 D. Poˇcani´c(UVa) Rare π decays: Study subjects 7 Nov '19/INT 2 / 34 The electronic (πe2) decay: π+ ! e+ν(γ) BR ∼ 10−4 D. Poˇcani´c(UVa) Rare π decays: The πe2 decay 7 Nov '19/INT 3 / 34 ∼ 2:5 × 10−5 I Strong SM helicity suppression amplifies sensitivity to PS terms (\door" for New Physics) by factor2 mπ=me (mu + md ) ≈ 8000. Rπ I e/µ tests lepton universality: in SM e, µ, τ differ by Higgs couplings only; there could also be newS or PS bosons with non-universal couplings (New Physics); repercussions also in the neutrino sector, SUSY, ALPS... I Experimental world average is 23× less accurate than SM calculations! [1:2327(23) × 10−4] πe2 decay: SM calculations, lepton universality I Early evidence for V − A nature of weak interaction. 2 2 2 2 2 π Γ(π ! eν¯(γ)) ge me (1 − me =mµ) Re/µ = = 2 2 2 2 2 1 + δRe/µ Γ(π ! µν¯(γ)) gµ mµ (1 − mµ=mπ) π Γ(π ! eν¯(γ)) I Modern SM calculations: R = = e/µ Γ(π ! µν¯(γ)) 8 CALC 1:2352(5) × 10−4 Marciano and Sirlin, [PRL 71 (1993) 3629] <> 1:2354(2) × 10−4 Finkemeier, [PL B 387 (1996) 391] :>1:2352(1) × 10−4 Cirigliano and Rosell, [PRL 99 (2007) 231801] D. Poˇcani´c(UVa) Rare π decays: Motivation 7 Nov '19/INT 4 / 34 Rπ I e/µ tests lepton universality: in SM e, µ, τ differ by Higgs couplings only; there could also be newS or PS bosons with non-universal couplings (New Physics); repercussions also in the neutrino sector, SUSY, ALPS... I Experimental world average is 23× less accurate than SM calculations! [1:2327(23) × 10−4] πe2 decay: SM calculations, lepton universality I Early evidence for V − A nature of weak interaction. ∼ 2:5 × 10−5 2 2 2 2 2 π Γ(π ! eν¯(γ)) ge me (1 − me =mµ) Re/µ = = 2 2 2 2 2 1 + δRe/µ Γ(π ! µν¯(γ)) gµ mµ (1 − mµ=mπ) π Γ(π ! eν¯(γ)) I Modern SM calculations: R = = e/µ Γ(π ! µν¯(γ)) 8 CALC 1:2352(5) × 10−4 Marciano and Sirlin, [PRL 71 (1993) 3629] <> 1:2354(2) × 10−4 Finkemeier, [PL B 387 (1996) 391] :>1:2352(1) × 10−4 Cirigliano and Rosell, [PRL 99 (2007) 231801] I Strong SM helicity suppression amplifies sensitivity to PS terms (\door" for New Physics) by factor2 mπ=me (mu + md ) ≈ 8000. D. Poˇcani´c(UVa) Rare π decays: Motivation 7 Nov '19/INT 4 / 34 I Experimental world average is 23× less accurate than SM calculations! [1:2327(23) × 10−4] πe2 decay: SM calculations, lepton universality I Early evidence for V − A nature of weak interaction. ∼ 2:5 × 10−5 2 2 2 2 2 π Γ(π ! eν¯(γ)) ge me (1 − me =mµ) Re/µ = = 2 2 2 2 2 1 + δRe/µ Γ(π ! µν¯(γ)) gµ mµ (1 − mµ=mπ) π Γ(π ! eν¯(γ)) I Modern SM calculations: R = = e/µ Γ(π ! µν¯(γ)) 8 CALC 1:2352(5) × 10−4 Marciano and Sirlin, [PRL 71 (1993) 3629] <> 1:2354(2) × 10−4 Finkemeier, [PL B 387 (1996) 391] :>1:2352(1) × 10−4 Cirigliano and Rosell, [PRL 99 (2007) 231801] I Strong SM helicity suppression amplifies sensitivity to PS terms (\door" for New Physics) by factor2 mπ=me (mu + md ) ≈ 8000. Rπ I e/µ tests lepton universality: in SM e, µ, τ differ by Higgs couplings only; there could also be newS or PS bosons with non-universal couplings (New Physics); repercussions also in the neutrino sector, SUSY, ALPS... D. Poˇcani´c(UVa) Rare π decays: Motivation 7 Nov '19/INT 4 / 34 πe2 decay: SM calculations, lepton universality I Early evidence for V − A nature of weak interaction. ∼ 2:5 × 10−5 2 2 2 2 2 π Γ(π ! eν¯(γ)) ge me (1 − me =mµ) Re/µ = = 2 2 2 2 2 1 + δRe/µ Γ(π ! µν¯(γ)) gµ mµ (1 − mµ=mπ) π Γ(π ! eν¯(γ)) I Modern SM calculations: R = = e/µ Γ(π ! µν¯(γ)) 8 CALC 1:2352(5) × 10−4 Marciano and Sirlin, [PRL 71 (1993) 3629] <> 1:2354(2) × 10−4 Finkemeier, [PL B 387 (1996) 391] :>1:2352(1) × 10−4 Cirigliano and Rosell, [PRL 99 (2007) 231801] I Strong SM helicity suppression amplifies sensitivity to PS terms (\door" for New Physics) by factor2 mπ=me (mu + md ) ≈ 8000. Rπ I e/µ tests lepton universality: in SM e, µ, τ differ by Higgs couplings only; there could also be newS or PS bosons with non-universal couplings (New Physics); repercussions also in the neutrino sector, SUSY, ALPS... I Experimental world average is 23× less accurate than SM calculations! [1:2327(23) × 10−4] D. Poˇcani´c(UVa) Rare π decays: Motivation 7 Nov '19/INT 4 / 34 The PEN/PIBETA apparatus • πE1 beamline at PSI • stopped π+ beam PEN detector • active target counter Runs 2-3 • 240 module spherical pure pure CsI calorimeter CsI • central tracking • beam tracking PH • digitized waveforms MWPC1 π+ mTPC VACUUM PMT beam AD AT BC MWPC2 ~3 m flightpath 10 cm BC: Beam Counter PH: Plastic Hodoscope (20 stave cylindrical) AD: Active Degrader MWPC: Multi-Wire Proportional Chamber (cylindrical) T C i i T m r j c i n C a b rT Active Target mTPC: mini-Time Projection ChamberAT: D. Poˇcani´c(UVa) Rare π decays: Experimental method 7 Nov '19/INT 5 / 34 π-exp Experimental branching ratio (Re/µ ) Recognizing that: I timing gates affect the analyzed number of πe2 and π ! µ ! e events; I MWPC efficiency depends on energy, peak π-exp Nπ!eν (1 + tail) fπ!µ!e(Te) (Eµ!eνν¯)MWPC Aπ!µ!e we have: Re/µ = Nπ!µν fπ!eν (Te) (Eπ!eν )MWPC Aπ!eν rf r rA 16000 14000 Ec Ec = cutoff energy 12000 N = number of events 10000 Counts A = acceptance 8000 6000 tail(Ec ) = tail to peak ratio 4000 π ! µ ! e π ! eν (E)MWPC = efficiency of MWPC 2000 −3 ×10 f (Te) = decay probability during 0 10 20 30 40 50 60 70 80 90 observation time window E CsI (MeV) D. Poˇcani´c(UVa) Rare π decays: Method 7 Nov '19/INT 6 / 34 Branching ratio/uncertainties peak π Nπ!eν fπ!µ!e(Te) (Eµ!eνν¯)MWPC Aπ!µ!e Re/µ = (1 + tail) Nπ!µν fπ!eν(Te) (Eπ!eν)MWPC Aπ!eν | {z } | {z } | {z } | {z } rN rf r rA | {z } blinded Uncertainties: s δR δr 2 δ 2 δr 2 δr 2 δr 2 = N + tail + f + + A R rN 1 + tail rf r rA MWPC(E): chamber efficiencies. rA: acceptances PEN goal: δR=R ' 5 × 10−4 D. Poˇcani´c(UVa) Rare π decays: Method 7 Nov '19/INT 7 / 34 Discriminating πe2 and πµ2 in TGT + e+ t(e ) in AT predicted from t(PH) mTPC mTPC ) (x; y) of πstop in AT ToF from B0 π+ PMT E(π+) AD AT Edep(AD) ) Edep; z of πstop in AT t(π+) in AT predicted from t(AD) Predicted π+ and e+ energies agree VERY well with observations: 11 7 + 10.5 e 6 10 9.5 5 9 4 (MeV) (MeV) 8.5 tgt obs e tgt obs π 8 E E 3 7.5 2 7 + 6.5 π 1 6 1 2 3 4 5 6 7 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 pred pred E (MeV) Eπ tgt (MeV) e tgt ) E and t predictions are used for πe2/πµ2 discrimination. D. Poˇcani´c(UVa) Rare π decays: Method 7 Nov '19/INT 8 / 34 Target waveforms and event type discrimination Measurement jrawj 0.07 20000 π ! eν simulation filtered π ! µν simulation predicted 0.06 15000 µ found 0.05 0.04 10000 target waveform yield 0.03 (2GS/s) 5000 0.02 0.01 0 0 400 450 500 550 600 650 700 750 800 -2 -1.5 -1 -0.5 0 0.5 1 time (0.5 ns/bin) ∆χ2 0.030 Measurement 2 π ! eν simulation ∆χ uses predicted and observed 0.025 π ! µν simulation timings and energies. Steps: 0.020 2 1. evaluate 2 peak fit ) χ2, 0.015 2 2. evaluate 3 peak fit ) χ3, yield 0.010 2 2 2 3. find ∆χ = χ2 − χ3 (normalized). 0.005 Best of ∼ dozen similar observables at 0.000 discriminating π / π event classes.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    76 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us