Lecture 10 Sinusoidal Steady-State and Frequency Response

Lecture 10 Sinusoidal Steady-State and Frequency Response

S. Boyd EE102 Lecture 10 Sinusoidal steady-state and frequency response sinusoidal steady-state ² frequency response ² Bode plots ² 10{1 Response to sinusoidal input convolution system with impulse response h, transfer function H PSfrag replacements u y H sinusoidal input u(t) = cos(!t) = ej!t + e¡j!t =2 t ¡ ¢ output is y(t) = h(¿) cos(!(t ¿)) d¿ Z0 ¡ let's write this as 1 1 y(t) = h(¿) cos(!(t ¿)) d¿ h(¿) cos(!(t ¿)) d¿ Z0 ¡ ¡ Zt ¡ ¯rst term is called sinusoidal steady-state response ² second term decays with t if system is stable; if it decays it is called the ² transient Sinusoidal steady-state and frequency response 10{2 if system is stable, sinusoidal steady-state response can be expressed as 1 ysss(t) = h(¿) cos(!(t ¿)) d¿ Z0 ¡ 1 = (1=2) h(¿) ej!(t¡¿) + e¡j!(t¡¿) d¿ Z0 ³ ´ 1 1 = (1=2)ej!t h(¿)e¡j!¿ d¿ + (1=2)e¡j!t h(¿)ej!¿ d¿ Z0 Z0 = (1=2)ej!tH(j!) + (1=2)e¡j!tH( j!) ¡ = ( H(j!)) cos(!t) ( H(j!)) sin(!t) < ¡ = = a cos(!t + Á) where a = H(j!) , Á = 6 H(j!) j j Sinusoidal steady-state and frequency response 10{3 conclusion if the convolution system is stable, the response to a sinusoidal input is asymptotically sinusoidal, with the same frequency as the input, and with magnitude & phase determined by H(j!) H(j!) gives ampli¯cation factor, i.e., RMS(y )=RMS(u) ² j j ss 6 H(j!) gives phase shift between u and y ² ss special case: u(t) = 1 (i.e., ! = 0); output converges to H(0) (DC gain) frequency response transfer function evaluated at s = j!, i.e., 1 H(j!) = h(t)e¡j!tdt Z0 is called frequency response of the system since H( j!) = H(j!), we usually only consider ! 0 ¡ ¸ Sinusoidal steady-state and frequency response 10{4 Example transfer function H(s) = 1=(s + 1) ² input u(t) = cos t ² SSS output has magnitude H(j) = 1=p2, phase 6 H(j) = 45± ² j j ¡ u(t) (dashed) & y(t) (solid) 1 0.5 0 −0.5 PSfrag replacements −1 0 5 10 15 20 t Sinusoidal steady-state and frequency response 10{5 more generally, if system is stable and the input is asymptotically sinusoidal, i.e., u(t) Uej!t ! < as t , then ¡ ¢ ! 1 y(t) y (t) = Y ej!t ! ss < ss as t , where ¡ ¢ ! 1 Yss = H(j!)U Y H(j!) = ss U for a stable system, H(j!) gives ratio of phasors of asymptotic sinusoidal output & input Sinusoidal steady-state and frequency response 10{6 thus, for example (assuming a stable system), H(j!) large means asymptotic response of system to sinusoid with ² frequnecy ! is large H(0) = 2 means asymptotic response to a constant signal is twice the ² input value H(j!) small for large ! means the asymptotic output for high ² frequency sinusoids is small Sinusoidal steady-state and frequency response 10{7 Measuring frequency response for ! = !1; : : : ; !N , apply sinusoid at frequency !, with phasor U ² wait for output to converge to SSS ² measure Y ² ss (i.e., magnitude and phase shift of yss) N can be a few tens (for hand measurements) to several thousand Sinusoidal steady-state and frequency response 10{8 Frequency response plots frequency response can be plotted in several ways, e.g., H(j!) & H(j!) versus ! ² < = H(j!) = H(j!) + j H(j!) as a curve in the complex plane (called ² Nyquist plot< ) = H(j!) & 6 H(j!) versus ! (called Bode plot) ² j j the most common format is a Bode plot Sinusoidal steady-state and frequency response 10{9 example: RC circuit 1­ 1 PSfrag replacements Y (s) = U(s) 1 + s u(t) 1F y(t) 1 H(j!) = 1 + j! 0 0 −5 j ) ! −10 j −30 ) ( −15 ! H j j −20 ( 10 −25 H 6 −60 log −30 20 PSfrag replacements −35 PSfrag replacements −40 −2 −1 0 1 2 −90 −2 −1 0 1 2 10 10 10 10 10 10 10 10 10 10 ! ! Sinusoidal steady-state and frequency response 10{10 example: suspension system of page 8-6 with m = 1, b = 0:5, k = 1, 0:5s + 1 ( 0:75!2 + 1) j0:5!3 H(s) = ; H(j!) = ¡ ¡ s2 + 0:5s + 1 !4 1:75!2 + 1 ¡ 10 0 j 0 −20 ) ! j −10 −40 ( H j −20 (degrees) −60 ) 10 ! −30 j ( −80 log H 20 PSfrag replacements −40 PSfrag replacements6 −100 −50 −120 −2 −1 0 1 2 −2 −1 0 1 2 10 10 10 10 10 10 10 10 10 10 ! ! Sinusoidal steady-state and frequency response 10{11 Bode plots frequency axis logarithmic scale for ! ² horizontal distance represents a ¯xed frequency ratio or factor: ² ratio 2 : 1 is called an octave; ratio 10 : 1 is called a decade magnitude H(j!) j j expressed in dB, i.e., 20 log H(j!) ² 10 j j vertical distance represents dB, i.e., a ¯xed ratio of magnitudes ² ratio 2 : 1 is +6dB, ratio 10 : 1 is +20dB slopes are given in units such as dB/octave or dB/decade ² phase 6 H(j!) multiples of 360± don't matter ² phase plot is called wrapped when phases are between 180± (or ² 0; 360±); it is called unwrapped if multiple of 360± is chosen§ to make phase plot continuous Sinusoidal steady-state and frequency response 10{12 Bode plots of products consider product of transfer functions H = F G: PSfrag replacements u G F y frequency response magnitude and phase are 20 log H(j!) = 20 log F (j!) + 20 log G(j!) 10 j j 10 j j 10 j j 6 H(j!) = 6 F (j!) + 6 G(j!) here we use the fact that for a; b C, 6 (ab) = 6 a + 6 b 2 so, Bode plot of a product is the sum of the Bode plots of each term (extends to many terms) Sinusoidal steady-state and frequency response 10{13 example. F (s) = 1=(s + 10), G(s) = 1 + 1=s 0 −20 j ) ! −25 j ) ( ! F −30 j j −45 ( 10 −35 F 6 log PSfrag replacements −40 PSfrag replacements 20 −90 −45 −2 −1 0 1 2 −2 −1 0 1 2 10 10 10 10 10 10 10 10 10 10 ! ! 40 0 j 35 ) ! 30 j ( 25 ) ! G j 20 j −45 ( 10 15 G 6 log 10 PSfrag replacements 20 5 PSfrag replacements 0 −90 −2 −1 0 1 2 −2 −1 0 1 2 10 10 10 10 10 10 10 10 10 10 ! ! Sinusoidal steady-state and frequency response 10{14 Bode plot of 1 + 1=s s + 1 H(s) = F (s)G(s) = = s + 10 s(s + 10) −30 20 j 10 −40 ) ! j −50 0 ) ( ! H j j −10 ( −60 10 H −20 6 −70 log PSfrag replacements 20 −30 PSfrag replacements −80 −40 −2 −1 0 1 2 −90 −2 −1 0 1 2 10 10 10 10 10 10 10 10 10 10 ! ! Sinusoidal steady-state and frequency response 10{15 Bode plots from factored form rational transfer function H in factored form: (s z ) (s z ) H(s) = k ¡ 1 ¢ ¢ ¢ ¡ m (s p ) (s p ) ¡ 1 ¢ ¢ ¢ ¡ n m 20 log H(j!) = 20 log k + 20 log j! z 10 j j 10 j j 10 j ¡ ij Xi=1 n 20 log j! p ¡ 10 j ¡ ij Xi=1 m n 6 H(j!) = 6 k + 6 (j! z ) 6 (j! p ) ¡ i ¡ ¡ i Xi=1 Xi=1 (of course 6 k = 0± if k > 0, and 6 k = 180± if k < 0) Sinusoidal steady-state and frequency response 10{16 Graphical interpretation: H(j!) j j s = j! m i=1 dist(j!; zi) H(j!) = k n j j j jQi=1 dist(j!; pi) Q since for u; v C, dist(u; v) = u v 2 j ¡ j PSfrag replacements therefore, e.g.: H(j!) gets big when j! is near a pole ² j j H(j!) gets small when j! is near a zero ² j j Sinusoidal steady-state and frequency response 10{17 Graphical interpretation: 6 H(j!) s = j! m n 6 H(j!) = 6 k+ 6 (j! z ) 6 (j! p ) ¡ i ¡ ¡ i Xi=1 Xi=1 PSfrag replacements therefore, 6 H(j!) changes rapidly when a pole or zero is near j! Sinusoidal steady-state and frequency response 10{18 Example with lightly damped poles poles at s = 0:01 j0:2, s = 0:01 j0:7, s = 0:01 ¡j1:3, § ¡ § ¡ § 50 0 j ) 0 ! j ) −180 ( ! H j j −50 ( 10 H 6 −360 log −100 PSfrag replacements 20 PSfrag replacements −540 −150 −1 0 1 −1 0 1 10 10 10 10 10 10 ! ! Sinusoidal steady-state and frequency response 10{19 All-pass ¯lter (s 1)(s 3) H(s) = ¡ ¡ (s + 1)(s + 3) 1 0 j ) 0.5 ! −90 j ) ( ! H j j 0 ( −180 10 H 6 log −0.5 −270 PSfrag replacements 20 PSfrag replacements −1 −360 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ! ! called all-pass ¯lter since gain magnitude is one for all frequencies Sinusoidal steady-state and frequency response 10{20 Analog lowpass ¯lters analog lowpass ¯lters: approximate ideal lowpass frequency response H(j!) = 1 for 0 ! 1; H(j!) = 0 for ! > 1 j j · · j j by a rational transfer function (which can be synthesized using R, L, C) example nth-order Butterworth ¯lter PSfrag replacements ¼=(2n) ¼=n p1 p2 1 ¼=n H(s) = (s p )(s p ) (s p ) ¡ 1 ¡ 2 ¢ ¢ ¢ ¡ n n stable poles, equally spaced ¼=n pn¡1 on the unit circle pn ¼=n ¼=(2n) Sinusoidal steady-state and frequency response 10{21 magnitude plot for n = 2, n = 5, n = 10 0 −20 j ) ! j ( −40 H j n = 2 log −60 n = 5 PSfrag replacements 20 −80 n = 10 −100 −2 −1 0 1 2 10 10 10 10 10 ! Sinusoidal steady-state and frequency response 10{22 Sketching approximate Bode plots sum property allows us to ¯nd Bode plots of terms in TF, then add simple terms: constant ² factor of sk (pole or zero at s = 0) ² real pole, real zero ² complex pole or zero pair ² from these we can construct Bode plot of any rational transfer function Sinusoidal steady-state and frequency response 10{23 Poles and zeros at s = 0 the term sk has simple Bode plot: phase is constant, 6 = 90k± ² magnitude has constant slope 20kdB=decade ² magnitude plot intersects 0dB axis at ! = 1 ² examples: integrator (k = 1): 6 = 90±, slope is 20dB=decade ² ¡ ¡ ¡ di®erentiator (k = +1): 6 = 90±, slope is +20dB=decade ² Sinusoidal steady-state and frequency response 10{24 Real poles and zeros H(s) = 1=(s p) (p < 0 is stable pole; p > 0 is unstable pole) ¡ magnitude: H(j!) = 1= !2 + p2 j j p for p < 0, 6 H(j!) = arctan(!= p ) ¡ j j for p > 0, 6 H(j!) = 180± + arctan(!=p) § Sinusoidal steady-state and frequency response 10{25 Bode plot for H(s) = 1=(s + 1) (stable pole): Bode Diagrams 0 −10 −20 −30 −40 −50 −60 0 −20 Phase (deg); Magnitude (dB) −40 −60 −80 0.001 0.01 0.1 1 10 100 1000 Frequency (rad/sec) Sinusoidal steady-state and frequency response 10{26 Bode plot for H(s) = 1=(s 1) (unstable pole): ¡ Bode Diagrams 0 −10 −20 −30 −40 −50 −60 −100 Phase (deg); Magnitude (dB) −120 −140 −160 −180 0.001 0.01 0.1 1 10 100 1000 Frequency (rad/sec) magnitude same as stable pole; phase starts at 180±, increases ¡ Sinusoidal

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us