The Likelihood Function - Introduction

The Likelihood Function - Introduction

The Likelihood Function - Introduction • Recall: a statistical model for some data is a set { f θ : θ ∈ Ω} of distributions, one of which corresponds to the true unknown distribution that produced the data. • The distribution fθ can be either a probability density function or a probability mass function. • The joint probability density function or probability mass function of iid random variables X1, …, Xn is n θ ()1 ,..., n = ∏ θ ()xfxxf i . i=1 week 3 1 The Likelihood Function •Let x1, …, xn be sample observations taken on corresponding random variables X1, …, Xn whose distribution depends on a parameter θ. The likelihood function defined on the parameter space Ω is given by L|(θ x1 ,..., xn ) = θ f( 1,..., xn ) x . • Note that for the likelihood function we are fixing the data, x1,…, xn, and varying the value of the parameter. •The value L(θ | x1, …, xn) is called the likelihood of θ. It is the probability of observing the data values we observed given that θ is the true value of the parameter. It is not the probability of θ given that we observed x1, …, xn. week 3 2 Examples • Suppose we toss a coin n = 10 times and observed 4 heads. With no knowledge whatsoever about the probability of getting a head on a single toss, the appropriate statistical model for the data is the Binomial(10, θ) model. The likelihood function is given by • Suppose X1, …, Xn is a random sample from an Exponential(θ) distribution. The likelihood function is week 3 3 Sufficiency - Introduction • A statistic that summarizes all the information in the sample about the target parameter is called sufficient statistic. • An estimator θ ˆ is sufficient if we get as much information about θ ˆ from θ as we would from the entire sample X1, …, Xn. • A sufficient statistic T(x1, …, xn) for a model is any function of the data x1, …, xn such that once we know the value of T(x1, …, xn), then we can determine the likelihood function. week 3 4 Sufficient Statistic •A sufficient statistic is a function T(x1, …, xn) defined on the sample space, such that whenever T(x1, …, xn) = T(y1, …, yn), then L x|(θ 1 ,..., x 2) = c⋅ (|θ L1 ,... yn ) y for some constant c. • Typically, T(x1, …, xn) will be of lower dimension than x1, …, xn, so we can consider replacing x1, …, xn by T(x1, …, xn) as a data reduction and this simplifies the analysis. •Example… week 3 5 Minimal Sufficient Statistics •A minimal sufficient statistic T for s model is any sufficient statistic such that once we know a likelihood function L(θ|x1, …, xn) for the model and data then we can determine T(x1, …, xn). • A relevant likelihood function can always be obtained from the value of any sufficient statistic T, but if T is minimal sufficient as well, then we can also obtain the value of T from any likelihood function. • It can be shown that a minimal sufficient statistics gives the maximal reduction of the data. •Example… week 3 6 Alternative Definition of Sufficient Statistic •Let X1, …, Xn be a random sample from a distribution with unknown parameter θ. The statistic T(x1, …, xn) is said to be sufficient for θ if the conditional distribution of X1, …, Xn given T does not depend on θ. • This definition is much harder to work with as the conditional distribution of the sample X1, …, Xn given the sufficient statistics T is often hard to derive. week 3 7 Factorization Theorem •Let T be a statistic based on a random sample X1, …, Xn. Then T is a sufficient statistic for θ if L x|(θ 1 x ,..., n ) = g;( Tθ )(1 h ,.., n x ) x i.e. if the likelihood function can be factored into two nonnegative functions one that depend on T(x1, …, xn) and θ and one that depend only on the data x1, …, xn. • Proof: week 3 8 Examples week 3 9 Minimum Variance Unbiased Estimator • MVUE for θ is the unbiased estimator with the smallest possible variance. We look amongst all unbiased estimators for the one with the smallest variance. week 3 10 The Rao-Blackwell Theorem ˆ • ed estimatorθˆ for Let be an unbiasθ such that Var (θ < ) ∞ . If T is a * sufficient statistic for θ, defineθ ˆ = ET ( θ ˆ| ) . Then, for all θ, * * Eθ( ˆ )= θ and Varθ(ˆ)≤ Var( θ ˆ). • Proof: week 3 11.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us