A.1 DERIVATION of the X-RAY FORM FACTOR Ρ Ρ Dr

A.1 DERIVATION of the X-RAY FORM FACTOR Ρ Ρ Dr

Appendix 1 A.1 DERIVATION OF THE X-RAY FORM FACTOR An X-ray beam is incident in the direction defined by the unit vector s0 . We shall consider radiation scattered in the direction defined by the unit vector s [7] The path difference between the rays is: − = − OR QP S.r S.r 0 … (A.1-1) π Phase difference = 2 × path difference λ Where λ is the wavelength of the incident radiation Then 2π v v v Phase difference = s.(r − s ) … (A.1-2) λ 0 Hence the scattered amplitude from an element dr of electron density ρ(r) is given by: 2πi vvv − )ss.(r Scattered amplitude = ρ e)r( λ 0 dr … (A.1-3) v v = ρ e)r( r.dik dr … (A.1-4) 2π v v v Where k = , d = s − s λ 0 Thus, the total scattered amplitude is obtained by integration over the whole electron density distribution as: v v Total scattered amplitude ∝ ∫ ρ e)r( r.dik dr … (A.1-5) 60 Appendix 1 Let us write the atomic scattering factor )s(f from an electron distribution of density ρ( r )as s = kd For closed shell atom ρ )r( is spherically symmetrical. The angular integrations can then be performed by spherical polar coordinates θ ,,r φ . Then the volume element becomes r 2 dr sin θdθdφ , and since s.r = sr cos θ we can integrate over φ from 0 to 2π to obtain. ∞ π )s(f = 2π ∫ r 2 ρ dr)r( ∫ e cosisr θ sin θdθ … (A.1-6) 0 0 The integration over θ can be carried out, with the result ∞ sin sr )s(f = ∫ ρ )r( 4πr 2 dr … (A.1-7) 0 sr But ρ )r( 4πr2 = D )r( … (A.1-8) Then ∞ sin sr )s(f = ∫ )r(D dr … (A.1-9) 0 sr Q P ρ dr)r( r S0 S O R Fig.(A.1-1) x-ray scattering 61 Appendix 1 The solution of equation (A.1-9) by mathematical analysis is: For K-shell − ζ +ζ + = ( i j ).r ( ni n j ) D( r ) ∑∑ N i N j e r … (A.1-10) i j ( sr )3 ( sr )5 … (A.1-11) sin( sr ) = sr − + − ...... 3! 5! By substituting equation (A.1-11) and (A.1-10) in equation (A.1-9) 3 5 − ( sr ) + ( sr ) − ∞ sr ...... − ζ+ ζ + = ( i j ).r ( ni n j ) 3! 5! )s(f ∫ ∑∑ ci c j N i N j e r dr 0 i j sr … (A.1-12) = x ∑∑ci c j N i N j … (A.1-13) i j = ζ + ζ m i j … (A.1-14) = + … (A.1-15) p ni n j ∞ 2 4 − ( sr ) ( sr ) )s(f = x∫ r p e m.r (1 − + − ......) dr 0 3! 5! ∞ 2 4 p −m.r s p+2 −m.r s p+4 −m.r = x∫ r e − r e + r e dr 0 3! 5! 2 + 4 + = !p − s ( p 2 )! + s ( p 4 )! x p+1 p+3 p+5 m 3! m 5! m 62 Appendix 1 ( p + 2 k( ))! s 2( k ) = − k )s(f x∑( 1) p+2 ( k )+1 … (A.1-16) k =0 ( 2( k ) + 1)! m (n + n + 2(k)) s! 2()k = ()− k i j )s(f ∑∑c c N N ∑ 1 + + ()+ i j i j ni n j 2 k 1 i j k =0 + ()ζ + ζ ( 2( k ) 1)! i j … (A.1-17) The total scattering form factor is given by: For Li-like ions ∞ sin( sr ) = 1 … (A.1-18) )s(f total 3∫ DT ( r1 ) dr 1 0 sr 1 = 1 [ + + ] D r( ) D α β r( ) D α α r( ) D β α r( ) T 1 3 K K 1 KL 1 KL 1 (n + n + 2(p)) s! 2()p = ()− p i j )s(f 2∑∑c c N N ∑ 1 + + ()+ i j i j ni n j 2 p 1 i j p=0 + ()ζ + ζ ( 2( k ) 1)! i j (n + n + 2( p )) !s 2( p ) + ()− p i j ∑∑d d N N ∑ 1 + + + i j i j ni n j 2( p ) 1 i j p=0 + ()ζ + ζ ( 2( k ) 1)! i j … (A.1-19) For Be-like ions ∞ sin( sr ) = 1 )s(f total 4∫ DT r( 1 ) dr 1 … (A.1-20) 0 sr 1 63 Appendix 1 1 D )r( = [D r( )+ D )r( + D )r( + D r( )+ D )r( + D r( )] T 1 6 KKα β 1 KLα α 1 KLβ α 1 KLα β 1 KLβ β 1 LLα β 1 (n + n + 2(p)) s! 2()p = ()− p i j )s(f 3∑∑c c N N ∑ 1 + + ()+ i j i j ni n j 2 p 1 i j p=0 + ()ζ + ζ ( 2( k ) 1)! i j ()n + n + 2()p s! 2()p + ()− p i j 3∑∑d d N N ∑ 1 + + ()+ i j i j ni n j 2 p 1 i j p=0 + ()ζ + ζ ( 2( k ) 1)! i j … (A.1-21) 64 Appendix 2 A.2 Γ DERIVATIONS THE TWO-PARTICLE DENSITY HF (,1 2 ) FOR KαKβ , K αLα , K βLα , K αLβ , K βLβ and, L αLβ Γ The two-particle density function HF (,1 2 )for the individual shells for Li- Like ions can be written as [51]: 3 Γ = 1 ∗ ij (1,2 ) ∑ Aij Aij 2 i< j And for Be-like ions can be written as: 6 Γ = 1 ∗ ij (1,2 ) ∑ Aij Aij 2 i< j Γ i j ij (,1 2 ) Shell Γ 1 2 12 (,1 2 ) K α K β Γ 1 3 13 (,1 2 ) Kα Lα Γ 2 3 23 (,1 2 ) K β Lα Γ 1 4 14 (,)1 2 K α Lβ Γ 2 4 24 (,)1 2 K β Lβ Γ 3 4 34 (,)1 2 Lα Lβ = φ φ − φ … φ … (A.2.1) Aij i (1) j ( 2 ) j (1) i ( 2 ) • ≡ In this work Aij Aij due to the S-state symmetry. 65 Appendix 2 (1) Kα Kβ Shell : 1 2 Γ (1,2 ) = []φ (1)φ ( 2 ) −φ (1)φ ( 2 ) …(A.2.2) 12 2 1 2 2 1 1 2 Γ = [ϕ α ϕ β −φ β φ α ] …(A.2.4) 12 1s (1) (1) 1s ( 2 ) ( 2 ) 1s (1) (1) 1s ( 2 ) ( 2 ) 2 Since : ϕ ( 1 ) = R ( 1 )Y ( 1 ) s1 s1 s1 ϕ = …(A.2.5) s1 ( 2 ) R s1 ( 2 Y) s1 ( 2 ) After integrated over all spins in equation (A.2.4) and substituted equation (A.2.5) into (A.2.4) we get: Γ ′ = [ ] 2 ….(A.2.6) 12 ( spinless ) R1s (1 Y) 1s (1)R1s ( 2 Y) 1s ( 2 ) now we can integrate over all angular part to get: Γ = 2 2 '12 (1,2 ) R1s (1 R) 1s ( 2 ) …(A.2.7) (2) Kα Lα Shell : 1 2 Γ (1,2 ) = []φ (1)φ ( 2 ) − φ (1)φ ( 2 ) 13 2 1 3 3 1 …(A.2.8) Γ = 1 [ϕ α ϕ α − ϕ α ϕ α ]2 13 (1,2 ) 1s (1) (1) 2s ( 2 ) ( 2 ) 2s (1) (1) 1s ( 2 ) ( 2 ) 2 ...(A.2.9) 66 Appendix 2 ϕ (1)ϕ ( 2 )−ϕ (1)ϕ ( 2 ) 2 Γ = []α α 2 1s 2s 2s 1s 13 ,( 21 ) (1) ( 2 ) …(A.2.10) 2 since ϕ = 1 s ( 1 ) R 1 s ( 1 Y) 1 s ( 1 ) ϕ ( 2 ) = R ( 2 Y) ( 2 ) 1 s 1 s 1 s …(A.2.11) ϕ (1) = R (1 Y) (1) 2 s 2 s 2 s ϕ = 2s ( 2 ) R2s ( 2 Y) 2s ( 2 ) And ∫α(1)β(1 d) σ = 0 ∫α(1)α(1 d) σ = 1 ∫ β(1)α(1 d) σ = 0 …(A.2.12) ∫ β(1)β(1 d) σ = 1 by substituted the equation (A.2.11) into (A.2.10) and integrated over all spins using equation (A.2.12) we get: 1 2 Γ ′( spinless ) = [R (1 Y) (1 R) ( 2 Y) ( 2 ) − R (1 Y) (1 R) ( 2 Y) ( 2 )] 13 2 1s 1 s 2s 2s 2s 2s 1s 1s ….(A.2.13) Since θ ϕ = θ ϕ …(A.2.14) Y1s ( , ) Y2s ( , ) 1 2 2 Γ ′(1,2 ) = [][]Y (1 Y) ( 2 ) R (1 R) ( 2 ) − R (1 R) ( 2 ) 13 2 1s 2s 1s 2s 2s 1s …(A.2.15) Now we can integrate over all the angular part so that we can get: 67 Appendix 2 R (1 R) (2)− R (1 R) (2) 2 Γ = 1s 2s 2s 1s ' 13 ( 1 , 2 ) …(A.2.16) 2 1 Γ )2,1(' = [R2 )1( R2 )2( + R2 )1( R2 )2( 13 2 1s 2s 2s 1s − ] 2R1s )1( R2s )1( R2s )2( R1s )2( ….(A.2.17) (3) Kβ Lα Shell : 1 2 Γ (1,2 ) = []φ (1)φ ( 2 ) − φ (1)φ ( 2 ) …(A.2.18) 23 2 2 3 3 2 1 2 Γ (1,2 ) = [ϕ (1)β(1)ϕ ( 2 )α( 2 ) − ϕ (1)α(1)ϕ ( 2 )β( 2 )] 23 2 1s 2s 2s 1s ..(A.2.19) By substituted equation (A.2.11) into (A.2.19) and integrated over all spins using equation (A.2.12) we get: 1 Γ ′ ( spinless ) = [R 2 (1 Y) 2 (1 R) 2 ( 2 Y) 2 ( 2 ) + R 2 (1 Y) 2 (1 R) 2 ( 2 Y) 2 ( 2 )] 23 2 1 s 1 s 2 s 2 s 2 s 2s 1s 1s …(A.2.20) Using eq.(A.2.14) and integrate over all angular part to get: Γ / = 1 []2 2 + 2 2 23 ( 1 , 2 ) R 1 s ( 1 R) 2 s ( 2 ) R 2 s ( 1 R) 1 s ( 2 ) …(A.2.21) 2 (4) Kα Lβ shell 68 Appendix 2 1 2 Γ (1,2 ) = []φ (1)φ ( 2 ) − φ (1)φ ( 2 ) 14 2 1 4 4 1 ...(A.2.22) 1 2 Γ (1,2 ) = [ϕ (1)α(1)ϕ ( 2 )β( 2 ) − ϕ (1)β(1)ϕ ( 2 )α( 2 )] 14 2 1s 2s 2s 1s ..(A.2.23) By substituting equation (A.2.11) into (A.2.23) and integrated over all spins using equation (A.2.12) we get: 1 Γ ′ ( spinless ) = [R 2 (1 Y) 2 (1 R) 2 ( 2 Y) 2 ( 2 ) + R 2 (1 Y) 2 (1 R) 2 ( 2 Y) 2 ( 2 )] 14 2 1s 1s 2s 2s 2s 2s 1s 1s ...(A.2.24) using equation (A.2.14) and integrate over all angular part to get: 1 Γ ' (1,2 ) = []R 2 (1 R) 2 ( 2 ) + R 2 (1 R) 2 ( 2 ) ...(A.2.25) 14 2 1s 2s 2s 1s (5) K β Lβ Shell : 1 2 Γ (1,2 ) = []φ (1)φ ( 2 ) − φ (1)φ ( 2 ) ...(A.2.26) 24 2 2 4 4 2 1 2 Γ (1,2 ) = [ϕ (1)β(1)ϕ ( 2 )β( 2 ) − ϕ (1)β(1)ϕ ( 2 )β( 2 )] 24 2 1s 2s 2s 1s ...(A.2.27) 69 Appendix 2 By substituting equation (A.2.11) into (A.2.27) and integrated over all spins using equation (A.2.12) we get: 1 Γ ′ ( spinless ) = [R 2 (1 Y) 2 (1 R) 2 ( 2 Y) 2 ( 2 ) + R 2 (1 Y) 2 (1 R) 2 ( 2 Y) 2 ( 2 )] 24 2 1s 1s 2s 2s 2s 2s 1s 1s ...(A.2.28) using equation (A.2.14) and integrate over all angular part to get: 1 Γ ,(' 21 ) = [R 2 (1 R) 2 ( 2 ) + R 2 (1 R) 2 ( 2 ) 24 2 1s 2s 2s 1s − ] ...(A.2.29) 2R1s (1 R) 2s (1 R) 2s ( 2 R) 1s ( 2 ) (6) Lα Lβ shell : 1 2 Γ (1,2 ) = []φ (1)φ ( 2 ) − φ (1)φ ( 2 ) ...(A.2.30) 34 2 3 4 4 3 1 2 Γ (1,2 ) = [ϕ (1)α(1)ϕ ( 2 )β( 2 ) − φ (1)β(1)φ ( 2 )α( 2 )] 34 2 2 s 2 s 2s 2s ...(A.2.31) Since : ϕ (1)=R (1 Y) (1) 2s 2s 2s …(A.2.32) ϕ = 2s (2) R2s (2 Y) 2s (2) 70 Appendix 2 After integrated over all spins in equation (A.2.31) and substituted equation (A.2.32) into (A.2.31) we get: Γ ′ = [ ] 2 ….(A.2.33) 34 ( spinless ) R2s (1 Y) 2s (1)R2s ( 2 Y) 2s ( 2 ) now we can integrate over all angular part to get: Γ = 2 2 '34 (1,2 ) R2s (1 R) 2s ( 2 ) …(A.2.34) 71 References References 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    92 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us