Density Functional Approach Francesco Sottile Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) 22 October 2010 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Kohn, W. and L. Sham, 1965, Phys. Rev. 140, A1133 Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Nitrogen (7 electron) 1. Any observable of a quantum Ψ(r1; ::; r7) 21 coordinates system can be obtained from 10 entries/coordinate ) 1021 entries the density of the system alone. 8 bytes/entry ) 8 · 1021 bytes 4:7 × 109 bytes/DVD ) 2 × 1012 DVDs 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Density Functional ... Why ? Density Functional ... Why ? Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Oxygen (8 electron) 1. Any (ground-state) observable Ψ(r1; ::; r8) 24 coordinates of a quantum system can be 24 obtained from the density of the 10 entries/coordinate ) 10 entries 8 bytes/entry ) 8 · 1024 bytes system alone. 5 · 109 bytes/DVD ) 1015 DVDs 2. The density of an interacting-particles system can Importance of non-interacting be calculated as the density of an auxiliary system of The Kohn-Sham one-particle equations non-interacting particles. Hi (r) i (r) = i (r) i (r) Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Oxygen (8 electron) 1. Any (ground-state) observable Ψ(r1; ::; r8) 24 coordinates of a quantum system can be 24 obtained from the density of the 10 entries/coordinate ) 10 entries 8 bytes/entry ) 8 · 1024 bytes system alone. 5 · 109 bytes/DVD ) 1015 DVDs 2. The density of an interacting-particles system can Importance of non-interacting be calculated as the density of an auxiliary system of The Kohn-Sham one-particle equations non-interacting particles. Hi (r) i (r) = i (r) i (r) Density Functional Theory - Kohn-Sham Z n(r0) r2 + V (r) + dr + V [n](r) (r) = (r) i ext jr − r0j xc i i i occ X 2 n(r) = j i (r)j = Exact density i Density Functional Theory - Kohn-Sham Z n(r0) r2 + V (r) + dr + V [n](r) (r) = (r) i ext jr − r0j xc i i i occ X 2 n(r) = j i (r)j = Exact density i Density Functional ... Hierarchy of approximation • LDA (local) • GGA (still local, but with a gradient expansion) • MetaGGA (non-local) • OEP (non local, orbital dependent) • ... Density Functional ... Hierarchy of approximation • LDA (local) • GGA (still local, but with a gradient expansion) • MetaGGA (non-local) • OEP (non local, orbital dependent) • ... Density Functional ... Successfull ? S. Redner http://arxiv.org/abs/physics/0407137 Density Functional Theory - Codes • Abinit • EXCITING • OpenMX • ADF • Fireball • ORCA • AIMPRO • FSatom • ParaGauss • Atomistix • GAMESS (UK) • PLATO • CADPAC • GAMESS (US) • PWscf • CASTEP • GAUSSIAN • ESPRESSO • CPMD • JAGUAR • Q-Chem • CRYSTAL06 • MOLCAS • SIESTA • DACAPO • MOLPRO • Spartan • DALTON • MPQC • S/PHI/nX • deMon2K • NRLMOL • TURBOMOLE • DFT++ • NWChem • VASP • DMol3 • OCTOPUS • WIEN2k Density Functional Theory - Kohn-Sham • total energy E[n] • ionic structure (lattice parameter) • surface reconstruction • molecular bonding • ... • \pseudo"p band-structure nk photoemission energies ?? × interpretation problem × results (band-gap) problem Density Functional Theory - Kohn-Sham • total energy E[n] • ionic structure (lattice parameter) • surface reconstruction • molecular bonding • ... • \pseudo"p band-structure nk photoemission energies ?? × interpretation problem × results (band-gap) problem Linear Response Approach Definition of polarizability "−1 = 1 + vχ χ is the polarizability of the system Linear Response Approach Polarizability interacting system δn = χδVext 0 non-interacting system δnn−i = χ δVtot Linear Response Approach Polarizability interacting system δn = χδVext 0 non-interacting system δnn−i = χ δVtot ∗ ∗ 0 0 X φi (r)φj (r)φi (r )φj (r ) χ0(r; r0;!) = :: IPA ! − (i − j ) ij hartree, hartree-fock, dft, etc. G.D. Mahan Many Particle Physics (Plenum, New York, 1990) Linear Response Approach Polarizability interacting system δn = χδVext 0 non-interacting system δnn−i = χ δVtot j unoccupied states ∗ ∗ 0 0 X φi (r)φj (r)φi (r )φj (r ) χ0(r; r0;!) = ! − (i − j ) ij from a DFT calculation occupied states i Independent Particle Polarizability Some good results ... (carbon nanotube) A.Marinopoulos et al. Appl. Phys. A, 78, 1157 (2004) Independent Particle Polarizability ... but it doesn't always work! (silicon) Absorption Spectrum of Bulk Silicon 60 Exp. 50 IPA 40 } M ε 30 Im { 20 10 0 2 3 4 5 6 ω (eV) Polarizability χ =6 χ0 χ = χ0 + something else Polarizability χ =6 χ0 χ = χ0 + something else Time Dependent Density Functional Theory Polarizability interacting system δn = χδVext 0 non-interacting system δnn−i = χ δVtot m Density Functional Formalism δn = δnn−i δVtot = δVext + δVH + δVxc Time Dependent Density Functional Theory Polarizability interacting system δn = χδVext 0 non-interacting system δnn−i = χ δVtot m Density Functional Formalism δn = δnn−i δVtot = δVext + δVH + δVxc Time Dependent Density Functional Theory Polarizability 0 χδVext = χ (δVext + δVH + δVxc ) δV δV χ = χ0 1 + H + xc δVext δVext δV δV δn H = H = vχ δVext δn δVext δVxc δVxc δn = = fxc χ δVext δn δVext with fxc = exchange-correlation kernel Time Dependent Density Functional Theory Polarizability 0 χδVext = χ (δVext + δVH + δVxc ) δV δV χ = χ0 1 + H + xc δVext δVext δV δV δn H = H = vχ δVext δn δVext δVxc δVxc δn = = fxc χ δVext δn δVext with fxc = exchange-correlation kernel Time Dependent Density Functional Theory Polarizability 0 χδVext = χ (δVext + δVH + δVxc ) δV δV χ = χ0 1 + H + xc δVext δVext δV δV δn H = H = vχ δVext δn δVext δVxc δVxc δn = = fxc χ δVext δn δVext 0 0 χ = χ + χ (v + fxc) χ with fxc = exchange-correlation kernel Time Dependent Density Functional Theory Polarizability 0 χδVext = χ (δVext + δVH + δVxc ) δV δV χ = χ0 1 + H + xc δVext δVext δV δV δn H = H = vχ δVext δn δVext δVxc δVxc δn = = fxc χ δVext δn δVext 0 −1 0 χ = 1 − χ (v + fxc) χ with fxc = exchange-correlation kernel Time Dependent Density Functional Theory Polarizability 0 χδVext = χ (δVext + δVH + δVxc ) δV δV χ = χ0 1 + H + xc δVext δVext δV δV δn H = H = vχ δVext δn δVext δVxc δVxc δn = = fxc χ δVext δn δVext 0 −1 0 χ = 1 − χ (v + fxc) χ with fxc = exchange-correlation kernel Time Dependent Density Functional Theory Polarizability χ in TDDFT 1. DFT ground-state calc. ! φi ; i G 2 • max Ecutoff = 2 • psedo-potential approach (norm-conserving) • Vxc (LDA; GGA) φ (r)φ∗(r)φ∗(r0)φ (r0) 0 P i j i j 2. φi ; i ! χ = ij !−(i −j ) δVH δn = v 3. δVxc variation of the potentials δn = fxc 0 0 4. χ = χ + χ (v + fxc ) χ Time Dependent Density Functional Theory Polarizability χ in TDDFT 1. DFT ground-state calc. ! φi ; i G 2 • max Ecutoff = 2 • psedo-potential approach (norm-conserving) • Vxc (LDA; GGA) φ (r)φ∗(r)φ∗(r0)φ (r0) 0 P i j i j 2. φi ; i ! χ = ij !−(i −j ) δVH δn = v 3. δVxc variation of the potentials δn = fxc 0 0 4. χ = χ + χ (v + fxc ) χ Time Dependent Density Functional Theory Polarizability χ in TDDFT 1. DFT ground-state calc. ! φi ; i G 2 • max Ecutoff = 2 • psedo-potential approach (norm-conserving) • Vxc (LDA; GGA) φ (r)φ∗(r)φ∗(r0)φ (r0) 0 P i j i j 2. φi ; i ! χ = ij !−(i −j ) δVH δn = v 3. δVxc variation of the potentials δn = fxc 0 0 4. χ = χ + χ (v + fxc ) χ Time Dependent Density Functional Theory Polarizability χ in TDDFT 1. DFT ground-state calc. ! φi ; i G 2 • max Ecutoff = 2 • psedo-potential approach (norm-conserving) • Vxc (LDA; GGA) φ (r)φ∗(r)φ∗(r0)φ (r0) 0 P i j i j 2. φi ; i ! χ = ij !−(i −j ) δVH δn = v 3. δVxc variation of the potentials δn = fxc 0 0 4. χ = χ + χ (v + fxc ) χ Time Dependent Density Functional Theory Polarizability χ in TDDFT 1. DFT ground-state calc. ! φi ; i G 2 • max Ecutoff = 2 • psedo-potential approach (norm-conserving) • Vxc (LDA; GGA) φ (r)φ∗(r)φ∗(r0)φ (r0) 0 P i j i j 2. φi ; i ! χ = ij !−(i −j ) δVH δn = v 3. δVxc variation of the potentials δn = fxc 0 0 4. χ = χ + χ (v + fxc ) χ TDDFT - hierarchy for fxc • fxc = 0 RPA dV lda • xc fxc = δn TD-LDA (ALDA) dV gga • xc fxc = δn TD-GGA • TD-OEP • ... Time Dependent Density Functional Theory TD-LDA on Absorption of Silicon Absorption Spectrum of Bulk Silicon 60 Exp. 50 IPA ALDA 40 } M ε 30 Im { 20 10 0 2 3 4 5 6 ω (eV) Time Dependent Density Functional Theory TD-LDA on Absorption of Argon F.Sottile et al. PRB 76, 161103 (2007). Time Dependent Density Functional Theory TD-LDA on IXS of Silicon H-C.Weissker it et al., Physical Review Letters 97, 237602 (2006) Time Dependent Density Functional Theory TD-LDA on Absorption of Anthracene (C14H10) Malloci et al. A&A 426, 105-117 (2004) Important Messages • DFT (very) useful tool for the ground state properties • DFT even used to construct an IPA polarizability • TDDFTp for electronic excitations and response functions simple functionals (LDA, GGA) very good for (many) finite systems p× absorption spectrum of solids is bad loss spectra ok Important Messages • DFT (very) useful tool for the ground state properties • DFT even used
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages47 Page
-
File Size-