Deposition and Characterization of Magnetron Sputtered Beta

Deposition and Characterization of Magnetron Sputtered Beta

Deposition and Characterization of Magnetron Sputtered Beta-Tungsten Thin Films Jiaxing Liu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2016 Jiaxing Liu All Rights Reserved ABSTRACT Deposition and Characterization of Magnetron Sputtered Beta-Tungsten Thin Films Jiaxing Liu β-W is an A15 structured phase commonly found in tungsten thin films together with the bcc structured W, and it has been found that β-W has the strongest spin Hall effect among all metal thin films. Therefore, it is promising for application in spintronics as the source of spin- polarized current that can be easily manipulated by electric field. However, the deposition conditions and the formation mechanism of β-W in thin films are not fully understood. The existing deposition conditions for β-W make use of low deposition rate, high inert gas pressure, substrate bias, or oxygen impurity to stabilize the β-W over α-W, and these parameters are unfavorable for producing β-W films with high quality at reasonable yield. In order to optimize the deposition process and gain insight into the formation mechanism of β-W, a novel technique using nitrogen impurity in the pressure range of 10-5 to 10-6 torr in the deposition chamber is introduced. This techniques allows the deposition of pure β-W thin films with only incorporation of 0.4 at% nitrogen and 3.2 at% oxygen, and β-W films as thick as 1μm have been obtained. The dependence of the volume fraction of β-W on the deposition parameters, including nitrogen pressure, substrate temperature, and deposition rate, has been investigated. The relationship can be modeled by the Langmuir-Freundlich isotherm, which indicates that the formation of β-W requires the adsorption of strongly interacting nitrogen molecules on the substrate. The dependence of β-W formation on the choice of underlayer materials has also been investigated. The β-W phase can only be obtained on the underlayer materials containing non- metallic elements. The dependence is explained by the existence of strong covalent bonds in β-W compared with that in α-W. The nickel and permalloy underlayers are the only exception to the above rule, and β-W has been successfully deposited on permalloy underlayer using very low deposition rate for spin-diffusion length measurement of β-W. The permalloy thin films usually take the (111) texture, since its (111) planes have the lowest surface energy. However, permalloy thin films deposited on β-W underlayer can achieve (002) texture using amorphous glass substrates. Therefore, the permalloy/β-W bilayer system can work as a seed layer for the formation of (002) textured films with fcc or bcc structure. The mechanism of the (002) texture formation cannot be explained by the existing models. The β-W to α-W phase transition was characterized by differential scanning calorimetry. The enthalpy of transformation is measured to be 8.3±0.4 kJ/mol, consistent with the value calculated using density functional theory. The activation energy for the β-W to α-W phase transformation kinetics is 2.2 eV, which is extremely low compared with that of lattice and grain boundary diffusion in tungsten. The low activation energy might be attributed to a diffusionless shuffle transformation process. Table of Contents List of Figures ............................................................................................................................... iv List of Tables .............................................................................................................................. viii Acknowledgements ...................................................................................................................... ix 1 - Introduction ............................................................................................................................. 1 1. 1 Introduction ................................................................................................................... 1 1.2 Organization of the Dissertation .................................................................................... 2 2 – Background and Motivation .................................................................................................. 4 2.1 Tungsten Thin Films in Electronics Industry ................................................................ 4 2.2 β-Tungsten Thin Films in Spintronics ........................................................................... 5 2.2.1 Properties of β-Tungsten Thin Films .................................................................. 5 2.2.2 Spin Hall Effect in β-Tungsten Thin Films ........................................................ 6 2.3 Deposition of Tungsten Thin Films ............................................................................. 10 2.3.1 Chemical Vapor Deposition .............................................................................. 10 2.3.2 Sputter Deposition ............................................................................................ 12 3 – Experimental Techniques ..................................................................................................... 15 3.1 Sputter Deposition ....................................................................................................... 15 3.1.1 Sputter Deposition Equipment .......................................................................... 15 3.1.2 Gas Impurity Monitoring .................................................................................. 17 3.1.3 Substrate Temperature Control ......................................................................... 18 3.2 Characterization Techniques ....................................................................................... 19 3.2.1 X-Ray Diffraction ............................................................................................. 19 3.2.2 X-Ray Reflectivity ............................................................................................ 21 3.2.3 X-Ray Photoelectron Spectroscopy .................................................................. 23 3.2.4 Transmission Electron Microscopy .................................................................. 25 3.2.5 Electrical Resistivity Measurement .................................................................. 31 3.2.6 Differential Scanning Calorimetry .................................................................... 33 i 4 – Deposition Conditions of β-W Thin Films .......................................................................... 36 4.1 Experimental Details ................................................................................................... 36 4.1.1 Sputter Deposition of Tungsten Thin Films...................................................... 36 4.1.2 Characterization of Tungsten Thin Films ......................................................... 37 4.2 Results ......................................................................................................................... 39 4.1.2 Film Composition Measurement....................................................................... 39 4.1.2 Relationship between β-W Formation and Deposition Conditions by XRD and Resistivity Measurement ................................................................................................ 45 4.1.3 Microstructure of β-W Thin Films by TEM ......................................................... 52 4.3 Discussion ................................................................................................................... 56 4.3.1 Advantages of β-W Deposition with Nitrogen Impurity .................................. 56 4.3.2 Modeling the Effect of Deposition Parameters on β-W Formation .................. 57 4.4 Summary ..................................................................................................................... 62 5 – Deposition of β-W on Other Underlayers and Substrates................................................. 64 5.1 Motivation ................................................................................................................... 64 5.2 Experimental Details ................................................................................................... 65 5.3 Results ......................................................................................................................... 67 5.3.1 Relationship Between Underlayer Materials and β-W Formation .................... 67 5.3.2 Deposition of β-W on Permalloy Underlayer ................................................... 69 5.4 Discussion ................................................................................................................... 72 5.4.1 Effect of Underlayer Crystalline Structure ....................................................... 72 5.4.2 Effect of Underlayer Chemistry ........................................................................ 73 5.5 Summary ..................................................................................................................... 76 6 – Formation of (002) Textured Permalloy on β-W ............................................................... 77 6.1 Motivation ................................................................................................................... 77 6.2 Experimental Details ................................................................................................... 78

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    131 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us