Updated Lecture Notes

Updated Lecture Notes

Quantum Mechanics Made Simple: Lecture Notes Weng Cho CHEW1 September 23, 2013 1The author is with U of Illinois, Urbana-Champaign. He works part time at Hong Kong U this summer. Contents Preface vii Acknowledgements vii 1 Introduction 1 1.1 Introduction . .1 1.2 Quantum Mechanics is Bizarre . .2 1.3 The Wave Nature of a Particle{Wave Particle Duality . .2 2 Classical Mechanics and Some Mathematical Preliminaries 5 2.1 Introduction . .5 2.2 Lagrangian Formulation . .6 2.3 Hamiltonian Formulation . .9 2.4 More on Hamiltonian . 10 2.5 Poisson Bracket . 11 2.6 Some Useful Knowledge of Matrix Algebra . 11 2.6.1 Identity, Hermitian, Symmetric, Inverse and Unitary Matrices . 13 2.6.2 Determinant . 14 2.6.3 Eigenvectors and Eigenvalues . 14 2.6.4 Trace of a Matrix . 15 2.6.5 Function of a Matrix . 15 3 Quantum Mechanics|Some Preliminaries 19 3.1 Introduction . 19 3.2 Probabilistic Interpretation of the Wavefunction . 20 3.3 Time Evolution of the Hamiltonian Operator . 21 3.4 Simple Examples of Time Independent Schr¨odingerEquation . 24 3.4.1 Particle in a 1D Box . 24 3.4.2 Particle Scattering by a Barrier . 25 3.4.3 Particle in a Potential Well . 26 3.5 The Quantum Harmonic Oscillator{A Preview . 28 i ii Quantum Mechanics Made Simple 4 Time-Dependent Schr¨odingerEquation 31 4.1 Introduction . 31 4.2 Quantum States in the Time Domain . 31 4.3 Coherent State . 32 4.4 Measurement Hypothesis and Expectation Value . 33 4.4.1 Uncertainty Principle{A Simple Version . 36 4.4.2 Particle Current . 37 5 More Mathematical Preliminaries 39 5.1 A Function is a Vector . 39 5.2 Operators . 42 5.2.1 Matrix Representation of an Operator . 42 5.2.2 Bilinear Expansion of an Operator . 43 5.2.3 Trace of an Operator . 44 5.2.4 Unitary Operators . 45 5.2.5 Hermitian Operators . 46 5.3 *Identity Operator in a Continuum Space . 49 5.4 *Changing Between Representations . 52 5.4.1 Momentum Operator . 52 5.4.2 Position Operator . 53 5.4.3 The Coordinate Basis Function . 54 5.5 Commutation of Operators . 54 5.6 Expectation Value and Eigenvalue of Operators . 55 5.7 *Generalized Uncertainty Principle . 57 5.8 *Time Evolution of the Expectation Value of an Operator . 59 5.9 Periodic Boundary Condition . 60 6 Approximate Methods in Quantum Mechanics 63 6.1 Introduction . 63 6.2 Use of an Approximate Subspace . 63 6.3 *Time Independent Perturbation Theory . 65 6.3.1 First Order Perturbation . 68 6.3.2 Second Order Perturbation . 69 6.3.3 Higher Order Corrections . 69 6.4 Tight Binding Model . 70 6.4.1 Variational Method . 73 6.5 Time Dependent Perturbation Theory . 74 7 Quantum Mechanics in Crystals 77 7.1 Introduction . 77 7.2 Bloch-Floquet Waves . 78 7.2.1 Periodicity of E(k)............................. 80 7.2.2 Symmetry of E(k) with respect to k ................... 80 7.3 Bloch-Floquet Theorem for 3D . 80 Contents iii 7.4 Fermi-Dirac Distribution Function . 83 7.4.1 Semiconductor, Metal, and Insulator . 84 7.4.2 Why Do Electrons and Holes Conduct Electricity? . 86 7.5 Effective Mass Schr¨odingerEquation . 86 7.6 Heterojunctions and Quantum Wells . 88 7.7 Density of States (DOS) . 89 7.7.1 Fermi Level and Fermi Energy . 90 7.7.2 DOS in a Quantum Well . 91 7.7.3 Quantum Wires . 93 8 Angular Momentum 97 8.1 Introduction . 97 8.1.1 Electron Trapped in a Pill Box . 98 8.1.2 Electron Trapped in a Spherical Box . 100 8.2 Mathematics of Angular Momentum . 103 8.2.1 Transforming to Spherical Coordinates . 104 9 Spin 109 9.1 Introduction . 109 9.2 Spin Operators . 109 9.3 The Bloch Sphere . 112 9.4 Spinor . 112 9.5 Pauli Equation . 113 9.5.1 Splitting of Degenerate Energy Level . 115 9.6 Spintronics . 115 10 Identical Particles 121 10.1 Introduction . 121 10.2 Pauli Exclusion Principle . 122 10.3 Exchange Energy . 123 10.4 Extension to More Than Two Particles . 124 10.5 Counting the Number of Basis States . 126 10.6 Examples . 127 10.7 Thermal Distribution Functions . 128 11 Density Matrix 131 11.1 Pure and Mixed States . 131 11.2 Density Operator . 132 11.3 Time Evolution of the Matrix Element of an Operator . 135 11.4 Two-Level Quantum Systems . 136 11.4.1 Interaction of Light with Two-Level Systems . 137 iv Quantum Mechanics Made Simple 12 Quantization of Classical Fields 147 12.1 Introduction . 147 12.2 The Quantum Harmonic Oscillator Revisited . 148 12.2.1 Eigenfunction by the Ladder Approach . 150 12.3 Quantization of Waves on a Linear Atomic Chain{Phonons . 151 12.4 Schr¨odingerPicture versus Heisenberg Picture . 156 12.5 The Continuum Limit . 158 12.6 Quantization of Electromagnetic Field . 160 12.6.1 Hamiltonian . 162 12.6.2 Field Operators . 163 12.6.3 Multimode Case and Fock State . 164 12.6.4 One-Photon State . 165 12.6.5 Coherent State Revisited . 166 12.7 Thermal Light . 170 13 Schr¨odingerWave Fields 173 13.1 Introduction . 173 13.2 Fock Space for Fermions . 173 13.3 Field Operators . 175 13.4 Similarity Transform . 177 13.5 Additive One-Particle Operator . 178 13.5.1 Three-Particle Case . 180 13.6 Additive Two-Particle Operator . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    256 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us