On Deoxidation Practice and Grain Size of Austenitic Manganese Steel

On Deoxidation Practice and Grain Size of Austenitic Manganese Steel

Licentiate Thesis On deoxidation practice and grain size of austenitic manganese steel Dimitrios Siafakas Jönköping University School of Engineering Dissertation Series No. 029 • 2017 Licentiate thesis in Materials and Manufacturing On deoxidation practice and grain size of austenitic manganese steel Dissertation Series No. 029 © 2017 Dimitrios Siafakas Published by Department of Materials and Manufacturing School of Engineering, Jönköping University P.O. Box 1026 SE-551 11 Jönköping Tel. +46 36 10 10 00 www.ju.se Printed by BrandFactory AB 2017 ISBN 978-91-87289-30-9 ABSTRACT The exceptional wear resistance and work hardenability, place Hadfield steel as one of the most important materials for manufacturing cast components used in the mining, crashing, drilling, and excavation industries. In all metallic alloys used for component casting, the mechanical properties are highly influenced by the microstructure of the material. Cast components with finer microstructural characteristics are known to present better mechanical properties and reduced risk of defects when compared with components with a coarser microstructure. A reduced grain size in Hadfield steel can increase the strength of the material up to 30% and reduce the risk of porosity formation during solidification. The practice of adding selected compounds or alloying elements in a metal melt to modify and refine the microstructure is called inoculation. It is currently one of the trending methods utilized in light-metal alloys and cast-iron components production but has not, yet, gained adequate acceptance in the steel casting industry because researchers have not been able to find proper inoculants. The main objective of this work is to investigate the qualitative and quantitative characteristics of the by-products of deoxidation of Hadfield steel that remain in the material after solidification and their positive or negative effect on the coarseness of the final as-cast microstructure. This type of research can help to identify the type of particles or alloying elements that are most effective for refining the microstructure of austenitic steels and pave the way for developing new or improving conventional deoxidation and inoculation processes that will, in turn, result in the improvement of the properties of the component. The precipitation of particles and the as-cast grain size are studied in aluminum and titanium deoxidized Hadfield steel samples acquired under pilot scale experimental conditions. In the first part of this work, the qualitative and quantitative characteristics of particles such as type, morphology, composition amount and size are identified. The sequence of precipitation is established. A model for predicting particle size and growth is developed. The experimental results are compared against thermodynamic equilibrium calculations and the precipitation mechanisms for each type of particles are described. In the second part, the as-cast grain size of samples with varying deoxidation treatments is measured. Then, the grain-size is correlated with certain particle characteristic and the particles are ranked according to their ability to refine the microstructure. The particle disregistry with austenite is calculated and compared to the experimentally acquired ranking. Keywords: Hadfield steel, deoxidation, grain size, inoculation, particles, carbides, oxides i SAMMANFATTNING Hadfieldstålen exceptionella slitstyrkan och deformationshårdnande har gjort dessa till ett av de viktigaste materialen för tillverkning av gjutna komponenter som används inom gruv-, kross-, borr-och gruvindustrin. I alla metallegeringar som används för tillverkning av gjutna komponenter styrs de mekaniska egenskaperna av materialets mikrostruktur. Gjutna komponenter med fin mikrostruktur presentera bättre mekaniska egenskaper och minskad risk för defekter jämfört med komponenter med grov mikrostruktur. En minskad kornstorlek i Hadfieldstål kan öka materialets hållfasthet upp till 30% och minska risken för porositetsbildning vid stelning. Tillsatsning av spårämnen eller legeringselement i en metallsmälta för att modifiera och förbättra mikrostrukturen kallas ympning. Denna metod används i lättmetaller och vid tillverkning av gjutjärnskomponenter, men har ännu inte fått acceptans i stålindustrin eftersom forskningen inte har funnit effektiva kärnbildare att användas som ympmedel. Huvudsyftet med detta arbete är att undersöka kvalitativa och kvantitativa egenskaper hos de desoxideringsprodukter som skapas under tillverkningen av Hadfield stål och hur de under och efter stelning påverkar mikrostrukturens grovlek. Arbetet syftar till att identifiera partikeltyper och legeringselement som är effektiva för att förfina den austenitiska mikrostrukturen och bana väg för utveckling nya och förbättra desoxiderings- och ympningsprocesser som i sin tur kommer att resultera i en förbättring av den gjutna komponentens egenskaper. Partiklarnas utskiljning och materialet resulterande kornstorlek studerades i aluminium- och titan-desoxidiserade Hadfieldstål, tillverkade i pilotskala. Den första delen av detta arbete var att identifiera kvalitativa och kvantitativa egenskaper hos desoxidationspartiklar, som typ, morfologi, sammansättning och storlek. Utskiljningssekvensen fastställdes. En modell för att förutsäga partikelstorlek och deras tillväxt utvecklades. De experimentella resultaten jämfördes med termodynamiska jämviktberäkningar och utskiljningen för varje typ av partikel beskrevs. I den andra delen studerades kornstorleken och hur denna varierade desoxideringsbehandlingen. Därefter korrelerades kornstorleken med partikeltyp och dess karaktäristika och rangordnades efter deras förmåga att förfina mikrostrukturen. Partiklarnas kristallografiska missanpassning mot austenitens kristallstruktur beräknades och jämfördes med experimentellt fastställda rangordningen. Nyckelord: Hadfield stål, desoxidering, kornstorlek, ympning, partiklar, karbider, oxider iii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to: My supervisors Anders E. W. Jarfors and Taishi Matsushita for giving me the opportunity to be a part of this project and for being a constant source of inspiration, guidance, support and constructive comments. Åsa Lauenstain, Johan Ekengård and Sven Ekerot for their work during casting activities, suggestions, enthusiasm and productive discussions. Toni Bogdanoff, Jörgen Bloom, Esbjörn Ollas, Peter Gunnarson and Lars Johansson for their help with the experimental equipment, the workshop activities and the experimental preparation. Ehsan Ghassemali for his help with SEM analysis and troubleshooting. Ralf Lisell and Vasileios Fourlakidis for their help with the casting activities All my colleagues at the department of materials and manufacturing for creating an ideal working environment promoting productivity and collaboration. All the industrial partners of the InDeGrainS project, Sandvik SRP AB, Swerea SWECAST, Comdicast AB and Air Liquide AB, for their valuable contribution to this work. The Swedish Knowledge Foundation for the financial support of the project. And finally, my parents and my beloved fiancée for their love, support and patience during this work. Dimitrios Siafakas Jönköping 2017 SUPPLEMENTS The following supplements constitute the basis of this thesis: Supplement I D. Siafakas, T. Matsushita, Å. Lauenstein, S. Ekerot, A. E. W. Jarfors, Particles Precipitation in Ti- and Al- Deoxidized Hadfield Steels, Steel Res. Int. 87(10) (2016) 1344-1355. D. Siafakas contributed to the experimental design and work, performed the analysis and was the main author. T. Matsushita, S. Ekerot, A. E. W. Jarfors contributed with advice regarding the work. Å. Lauenstein, S. Ekerot contributed with the experimental work Supplement II D. Siafakas, T. Matsushita, Å. Lauenstein, S. Ekerot, A. E. W. Jarfors, A particle population analysis in Ti- and Al- Deoxidized Hadfield steels, Int. J. Cast Metal Res., DOI: 10.1080/13640461.2017.1379262 D. Siafakas contributed to the experimental design and work, performed the analysis and was the main author. T. Matsushita, S. Ekerot, A. E. W. Jarfors contributed with advice regarding the work. Å. Lauenstein, S. Ekerot contributed with the experimental work Supplement III D. Siafakas, T. Matsushita, Å. Lauenstein, J. Ekengård, A. E. W. Jarfors, The Influence of Deoxidation Practice on the As-Cast Grain Size of Austenitic Manganese Steels, Metals 7(6) (2017) 186. D. Siafakas contributed to the experimental design and work, performed the analysis and was the main author. T. Matsushita, J. Ekengård, A. E. W. Jarfors contributed with advice regarding the work. Å. Lauenstein, J. Ekengård contributed with the experimental work v TABLE OF CONTENTS CHAPTER 1: INTRODUCTION ............................................................................................................... 1 BACKGROUND ........................................................................................................................................... 1 DEOXIDATION OF HADFIELD STEEL .................................................................................................... 2 NUCLEATION AND GROWTH ................................................................................................................. 2 Homogeneous and heterogeneous nucleation ........................................................................................... 2 Particle growth in steel ............................................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    57 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us