Rna Recognition by the Pattern Recognition Receptor Rig-I

Rna Recognition by the Pattern Recognition Receptor Rig-I

RNA RECOGNITION BY THE PATTERN RECOGNITION RECEPTOR RIG-I: ROLES OF RNA BINDING, MULTIMERIZATION, AND RNA-DEPENDENT ATPASE ACTIVITY By ELIZABETH E. DELANEY Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. Eckhard Jankowsky Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY August 2014 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve this thesis/dissertation of Elizabeth E. DeLaney . Candidate for the Doctor of Philososphy degree* (signed) David Samols . (chair of the committee) Eckhard Jankowsky . Derek Abbott . Blanton Tolbert . Jonatha Gott . (date) March 28, 2014 . *We also certify that written approval has been obtained for any proprietary material contained therein. ii Table of Contents List of Tables…………………………………………………………………………….ix List of Figures…………………………………………………………………………….x Acknowledgements>……………………………………………………………………xiv List of Abbreviations……………………………………………………………….…..xvi Abstract…………………………………………………………………………………xix Chapter 1: Pathogen detection by the innate immune system 1.1 Innate immunity: detection of conserved molecular patterns…………………...1 1.2 Types of PRRs……………………………………………………………………2 1.2.1 Toll-like receptors……………………………………………………….2 1.2.2 C-type lectin receptors………………………………………………......5 1.2.3 Nod-like receptors………………………………………………………7 1.2.4 RIG-I-like receptors……………………………………………………..9 1.2.4.1 Identification and function of RIGI……………………………...10 1.2.4.2 Identification and function of MDA5 and LGP2………………...11 1.3 RIG-I signaling pathway…………...…………………………………………...13 iii 1.4 RIG-I and MDA5 activate antiviral signaling in response to distinct viruses…17 1.4.1 RIG-I recognizes a diverse range of viruses………………………….17 1.4.2 MDA5 is primarily activated by picornaviruses……………………...20 1.5 RIG-I domain structure and function…………………………………………..20 1.5.1 Overall RIG-I domain structure………………………………………20 1.5.2 CARD domains in RIG-I are necessary for signal transduction………23 1.5.2.1 Structure and function of RIG-I CARD domains………………..23 1.5.2.2 Ubiquitination of the CARD domains regulates RIG-I signal transduction………………………………………………………26 1.5.3 RIG-I helicase/ATPase domain………………………………………..30 1.5.4 RIG-I CTD functions in ligand binding and multimerization…………37 1.5.5 Molecular mechanism of RIG-I substrate recognition…………….…..41 1.6 RIG-I recognizes multiple structural features of viral RNA……………………45 Chapter 2: Development of L21 ribozyme as a method to generate RIG-I RNA substrates……………………………………………………………………51 2.1 Rationale for using the L-21 ribozyme for producing RIG-I substrates in vitro.....................................................................................................................51 2.2 Characterization of L-21 ribozyme activity on RIG-I substrates……….……...54 2.3 Discussion……………………………………………………………………..60 iv Chapter 3: RIG-I tightly binds dsRNA………………………………………………....61 3.1 Introduction……………………………………………………………………61 3.2 Results…………………………………………………………………………62 3.2.1 Purification of wild-type and mutant RIG-I………………………………62 3.2.2 RIG-I binds ssRNA with low affinity despite presence of a 5’-triphosphate……………………………………………………………63 3.2.3 5’-triphosphate does not impact RIG-I binding to dsRNA……………….64 3.2.4 RIG-I binds dsRNA tightly regardless of duplex length………………….68 3.2.5 RIG-I binding to RNA duplexes at least 16 bp involves two species or RNA-protein complexes………………………………………..…………70 3.2.6 RIG-I multimerization is dependent upon RNA duplex length…….…....72 3.2.7 RIG-I deletion mutant demonstrate major RNA binding site is the CTD..77 3.3 Discussion……………………………………………………………………...84 3.3.1 RNA 5’-end structure has no significant effect on RIG-I RNA binding….84 3.3.2 RIG-I RIG-I binds dsRNA cooperatively and multimerization is dependent on duplex length…………………………………………………………..87 3.3.3 Major RNA binding site is in the RIG-I CTD…………………………….88 Chapter 4: RIG-I ATPase activity recognizes the presence of dsRNA……..………….90 v 4.1 Introduction………………………………………………………..…………90 4.2 Results…………………………………………..……………………………91 4.2.1 Nucleotide has no effect on RIG-I-RNA affinity, but promotes complex dissociation………………………………………………….…………………91 4.2.2 ATP enhances dissociation of RIG-I from RNA………………………..96 4.2.3 RIG-I RNA-dependent ATPase activity is independent of RNA duplex length…………………………………………………………………...100 4.3 Discussion…………………………………………………………………….102 Chapter 5: RIG-I proofreads RNA duplexes for blunt ends with its ATPase activity…106 5.1 Introduction…………………………………………………………………...106 5.2 Results…………………………………………………………………………107 5.2.1 RIG-I efficiently binds RNA duplexes with blocked ends………………107 5.2.2 RIG-I ATPase activity proofreads RNA duplexes for blunt ends……….109 5.3 Discussion…………………………………………………………………….112 5.3.1 RIG-I RNA-dependent ATPase activity identifies blunt duplex ends…...112 5.3.2 Model of RIG-I substrate recognition……………………………………113 Chapter 6: Future directions……………………………………………………………116 vi 6.1 Introduction……………………………………………………………………...116 6.2 Effects of RNA 5’-end structure on RIG-I RNA recognition in vivo……….117 6.3 Activation of antiviral signaling in vivo by frayed end substrates…………..118 6.4 Effect of ubiquitination of RIG-I on RIG-I-RNA binding and ATP hydrolysis………………….............................................................................119 Chapter 7: Materials and Methods…………………………………………………….124 7.1 Materials………………………………………………………………………124 7.1.1 Plasmids…………………………………………………………………124 7.1.2 Proteins………………………………………………………………….126 7.1.3 Oligonucleotides………………………………………………………...127 7.1.4 Miscellaneous reagents………………………………………………….130 7.2 Methods………………………………………………….……………………131 7.2.1 Radiolabeling and gel purification of RNA and DNA oligonucleotides..131 7.2.2 Characterization of L-21 ribozyme activity on RIG-I substrates………..132 7.2.3 End-labeling of ssRNA with L-21 ribozyme…………………………….132 7.2.4 RIG-I binding under equilibrium conditions…………………………….133 7.2.5 Derivation of equations for coupled equilibrium………………………..134 vii 7.2.6 Dissociation kinetics of RIG-I-RNA complexes………………………...136 7.2.7 Glutaraldehyde crosslinking of RIG-I-RNA complexes…………………137 7.2.8 Measurement of RIG-I ATPase activity with thin layer chromatography.138 Bibliography……………………………………………………………………………139 viii List of Tables Table 1.1. Viruses recognized by RIG-I………………………………………………...19 Table 2.1. L-21 ribozyme RNA precursor substrate sequences…………………………55 Table 3.1. Wild-type RIG-I binding parameters calculated from coupled equilibrium…71 Table 3.2. Stimulation of RIG-I ATPase activity by 36 nt ssRNAs and 36 bp duplexes with and without a 5’-triphosphate……………………………………...…..79 Table 3.3. RIG-IΔCARD binding parameters calculated from coupled equilibrium...…82 Table 4.1. RIG-I binding to 36 bp duplex with a 5’-triphosphate in the presence of nucleotide…………………………………………………………………...92 Table 4.2. Off rates of RIG-I from indicated RNA duplexes in presence and absence of ATP…………………………………………………………………………..99 Table 5.1. Dissociation rate constants and kinetic parameters of RIG-I in presence of end-blocked RNA substrates………………………………………………111 ix List of Figures Figure 1.1. Schematic of the major classes of cellular PRRs……………………………4 Figure 1.2. Schematic of RIG-I domain structure……………………………………….10 Figure 1.3. Schematic of MDA5 and LGP2 domain structures…………………………13 Figure 1.4. Schematic of RLR signaling pathway………………………………………15 Figure 1.5. Sequence alignment of RIG-I, MDA5, and LGP2………………………….21 Figure 1.6. Schematic showing the Greek key motif present in CARD domains………24 Figure 1.7 Structure of MAVS CARD domain…………………………………………24 Figure 1.8 Crystal structure of duck RIG-I in the absence of RNA and NTP………….25 Figure 1.9. TRIM25 interacts with T55 in CARD1 to ubiquitinate K172 in CARD2…27 Figure 1.10. Schematic of RIG-I domain structure with residues ubiquitinated by Riplet………………………………………………………………………28 Figure 1.11. Schematic of RIG-I domain structure with residue important for interaction with TRIM25 shown and the interaction of the second CARD domain with K63-linked polyubiquitin chains…………………….……………………29 Figure 1.12. Schematics of conserved RNA helicase domain motifs…………………..32 Figure 1.13. Crystal structure of ligand bound human RIG-I………………………......37 Figure 1.14. Schematic and crystal structure of RIG-I CTD……………………………40 x Figure 1.15 RIG-I undergoes a conformational change upon RNA binding…...……….43 Figure 2.1. Tetrahymena ribozyme crystal structure and schematic of mechanism……54 Figure 2.2. L-21 ribozyme efficiently cleaves R13L21PBot precursor RNA………......57 Figure 2.3. L-21 ribozyme efficiently cleaves R13L21P and R10L21P precursor RNAs………………………………………………………………………..58 Figure 2.4. L-21 ribozyme efficiently cleaves and 84 nt precursor in the presence of GTP And analogs……………………………………….………………………59 Figure 3.1. Schematic of wild-type RIG-I and RIG-I deletion mutants……………….62 Figure 3.2. Purified WT and mutant RIG-I proteins……………………………….…..63 Figure 3.3. RIG-I binds ssRNA weakly, and 5’-triphosphate enhances binding affinity…………………………………………………………………….64 Figure 3.4. RIG-I binds a 36 bp dsRNA tightly, regardless of presence of a 5’-triphosphate……………………………………………………………..65 Figure 3.5. RIG-I binds a 10 bp dsRNA tightly, regardless of presence of a 5’-triphosphate..............................................................................................67 xi Figure 3.6. RIG-I binds a 13 bp dsRNA tightly, regardless of presence of a 5’-triphosphate...............................................................................................68 Figure 3.7. RIG-I binds dsRNA tightly

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    174 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us