XXIV cycle Doctoral School in Materials Science and Engineering Molecular Dynamics and X-ray Powder Diffraction Simulations Investiigatiion of nano-pollycrystalllliine miicrostructure at the atomiic scalle couplliing llocall structure confiiguratiions and X-ray Powder Diiffractiion techniiques Alberto Leonardi November 2012 MOLECULAR DYNAMICS AND X-RAY POWDER DIFFRACTION SIMULATIONS INVESTIGATION OF NANO-POLYCRYSTALLINE MICROSTRUCTURE AT THE ATOMIC SCALE COUPLING LOCAL STRUCTURE CONFIGURATIONS AND X-RAY POWDER DIFFRACTION TECHNIQUES Alberto Leonardi E-mail: [email protected] Approved by: Ph.D. Commission: Prof. Paolo Scardi, Advisor Prof. Alberto Quaranta Department of Materials Engineering Department of Materials Engineering and Industrial Technologies and Industrial Technologies University of Trento, Italy. University of Trento, Italy. Prof. Matteo Leoni Prof. Rozalya Barabash Department of Materials Engineering Materials Science & Technology Div. and Industrial Technologies Oak Ridge National Laboratory, University of Trento, Italy. Tenneesee (US). Prof. Marco Milanesio Department of Science and advanced technologies University of Piemonte Orientale, Italy. University of Trento, faculty of engineering Department of Materials Engineering and Industrial Technologies November 2012 University of Trento - Department of Materials Engineering and Industrial Technologies Doctoral Thesis Alberto Leonardi - 2012 Published in Trento (Italy) – by University of Trento ISBN: 978-88-8443-455-5 "The essence of science lies not in discovering facts, but in discovering new ways of thinking about them. “ W. L. Bragg Abstract Atomistic simulations based on Molecular Dynamics (MD) were used to model the lattice distortions in metallic nano-polycrystalline microstructures, with the purpose of supporting the analysis of the X-ray powder diffraction patterns with a better, atomic level understanding of the studied system. Complex microstructures were generated with a new modified Voronoi tessellation method which provides a direct relation between generation parameters and statistical properties of the resulting model. MD was used to equilibrate the system: the corresponding strain field was described both in the core and in surface regions of the different crystalline domains. New methods were developed to calculate the strain tensor at the atomic scale. Line Profile Analysis (LPA) was employed to retrieve the microstructure information (size and strain effects) from the powder diffraction patterns: a general algorithm with an atomic level resolution was developed to consider the size effects of crystalline domains of any arbitrary shape. The study provided a new point of view on the role of the grain boundary regions in nano-polycrystalline aggregates, exploring the interference effects between different domains and between grain boundary and crystalline regions. Usual concepts of solid mechanics were brought in the atomistic models to describe the strain effects on the powder diffraction pattern. To this purpose the new concept of Directional - Pair Distribution Function (D-PDF) was developed. D-PDFs calculated from equilibrated atomistic simulations provide a representation of the strain field which is directly comparable with the results of traditional LPA (e.g. Williamson-Hall plot and Warren-Averbach method). The D-PDF opens a new chapter in powder diffraction as new insights and a more sound interpretation of the results are made possible with this new approach to diffraction LPA. Table of contents Chapter I Introduction .............................................................................................. 13 Chapter II Modelling of Material Microstructures ................................................. 17 2.1. Abstract ....................................................................................... 17 2.2. Introduction ................................................................................. 18 2.3. Methods ....................................................................................... 20 2.3.1. Traditional stochastic tessellation methods .......................... 20 2.3.2. Modified Voronoi Tessellation (MVT) .................................... 22 2.3.2.1. Relationships between traditional tessellations and the MVT .......................................................................................... 25 2.3.3. Constrained Modified Voronoi Tessellation (CMVT) ............ 27 2.4. Results and discussion ............................................................. 28 2.4.1. Atomic density and voids in MVT-derived microstructures .. 28 2.4.2. Statistical properties of the MVT ........................................... 32 2.4.3. Relationship between input parameters and resulting microstructure ........................................................................ 36 2.4.4. Reliability of MVT statistics by the evolutionary CMVT ........ 39 2.4.5. Multiple target properties optimization with CMVT ............... 41 2.4.6. MVT computing performance ................................................ 44 2.5. Conclusion .................................................................................. 46 Chapter III Analysis of Atomistic Simulation Data ................................................ 47 3.1. Abstract ....................................................................................... 47 3.2. Introduction ................................................................................. 48 3.3. Methods ....................................................................................... 49 3.3.1. Molecular Dynamics simulation ............................................. 49 3.3.2. Global mean square displacement (global MSD) ................. 51 9 3.3.3. Local coordination and surface shape .................................. 52 3.3.4. Strain at the atomic level ....................................................... 54 3.3.4.1. The Voronoi Cell Deformation method (VCD) ................ 55 3.3.4.2. The evolutional Voronoi Cell Deformation method (eVCD) .......................................................................................... 56 3.3.5. Isotropic and Anisotropic strains ........................................... 57 3.3.6. Potential energy and Stress at the atomic level ................... 59 3.4. Results and discussion ............................................................. 60 3.4.1. Strain at the atomic level in a nano-polycrystalline microstructure from MD .................................................................................. 60 3.4.2. Stress – Strain relation in polycrystalline microstructure ..... 68 3.4.3. Preliminary X-ray Diffraction Line Profile analysis ............... 70 3.5. Conclusion .................................................................................. 73 3.6. Appendix III.A: Deformation of convex polyhedron from volume properties ...................................................................................................... 74 3.7. Appendix III.B: Deformation of convex polyhedron from mass properties ...................................................................................................... 76 Chapter IV Interference Effects in Nano-crystalline Systems .............................. 77 4.1. Abstract ....................................................................................... 77 4.2. Introduction ................................................................................. 78 4.3. Generation of the nano-polycrystalline model ...................... 78 4.4. Results and Discussion ............................................................ 79 4.5. Conclusions ................................................................................ 86 Chapter V Common Volume Function & Diffraction Line Profiles ..................... 87 5.1. Abstract ....................................................................................... 87 5.2. Introduction ................................................................................. 88 5.3. Common Volume Function of polyhedral crystallites .......... 90 10 5.3.1. Convex polyhedra .................................................................. 90 5.3.2. Non-convex polyhedra ........................................................... 93 5.4. Examples of application ............................................................ 93 5.4.1. Convex shapes ...................................................................... 94 5.4.1.1. Truncated and bitruncated cube ..................................... 94 5.4.1.2. Irregular domain shapes: 3D Voronoi cell ...................... 95 5.4.1.3. Polycrystalline microstructure: 3D Poisson-Voronoi microstructure .................................................................. 97 5.4.2. Non-convex shapes ............................................................... 98 5.4.2.1. Planar tripods and tetrapods ........................................... 98 5.4.2.2. Hollow cubes ................................................................... 100 5.4.3. Non-polyhedral shapes .......................................................... 102 5.5. Conclusions ................................................................................ 104 5.6. Appendix V.A: Common Volume Function in the frame of set theory ......... 105 Chapter VI Directional - Pair Distribution Function ............................................... 107 6.1. Abstract ......................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages156 Page
-
File Size-