Lectures #12 and #13 First & Second Quantization

Lectures #12 and #13 First & Second Quantization

October 17 Lectures #12 and #13 October 21 Second quantization Evaluation of one and two -particle matrix elements Coulomb matrix elements: example of two -particle operator (second quantization form) Helium atom: LS coupled states Chapter 4, pages 95 -99, 102 -106, Lectures on Atomic Physics Chapter 11, pages 241 -246, Atomic many -body theory I. Lindgren and J. Morrison First & second quantization First quantization Second quantization Classical particles are assigned wave amplitudes Wave fields are “quantized” to describe the problem in terms of “quanta” or particles. 1 2 1 Second quantization: atomic electrons (fermions) One-electron state |k> Ψ Described by the wave function k(ri) = † k a k 0 Creation operator Vacuum state (no electrons) 0 0= 1 Second quantization: atomic electrons (fermions) One-electron state |k> Vacuum state Ψ Described by the wave function k(q i) (no electrons) = † 0 0= 1 k a k 0 Creation operator = k0 a k Annihilation operator = “there are no electrons to annihilate in a vacuum” ak 0 0 : † = 0ak 0 2 Anticommutation relations ††= †† + †† = {aaij,} aa ij aa ji 0 = + = {}aaij, aa ij aa ji 0 †= † + † = δ {}aai, j aa ij aa ji ij = ak 0 0 † = Orthonormality of one-electron states: 0ak 0 =† =−δ † = δ ij000 aaij ij aa ji 0 ij Two -electron states First quantizaiton : Second quantizaiton Slater determinant ψ ψ 1 j()q1 k () q 2 Ψ(q , q ) = jk 1 2 ψ ψ = † † 2 j()q2 k () q 2 jk aaj k 0 Orthonormality of two-electron states: Ψ( ) Ψ( ) =−δδ δδ = † † ijqq12, kl qq 12 , ik jl il jk ijkl0 aaaaj i k l 0 NOTE: reversed order Need to evaluate 3 Orthonormality of two-electron states =† † = ijkl0 aaaaj i k l 0 ? † † Lets transform a j aa i k a l to “normal form ”: Move: Creation operators Annihilation operators left right Use anticommutation relations to move ai to the right †††=δ − †† =− δδ † δδ − ††† + aaaajikl aa jlik aaaa jkil ikjl aa ljik jkil aa aaaa kjil =−δδ† δδδδ −+ †††† + δ − = ikjlaa l jik jkil jkli aaaa kjil aaaa kjli =−δδ† δδδδ −+ †† + δδ − ††† + ikjlaa l jik jkil jkli aaaa kjil jlki aaaaaa kl ji Orthonormality of two-electron states =† † = ijkl0 aaaaj i k l 0 ? † † Lets transform a j aa i k a l to “normal order ”: Normal order with Creation operators Annihilaiton operators respect to left right vacuum Use anticommutation relations to move ai and aj to the right †††=δ − †† =− δδ † δδ − ††† + aaaajikl aa jlik aaaa jkil ikjl aa ljik jkil aa aaaa kjil =−δδ† δδδδ −+ †††† + δ − = ikjlaa l jik jkil jkli aaaa kjil aaaa kjli =−δδ† δδδδ −+ †† + δδ − ††† + ikjlaa l jik jkil jkli aaaa kjil jlki aaaaaa kl ji 4 = † † ijkl0 aaaaj i k l 0 Normal order of operators Why do we want to transform to normal order? To calculate expectation values: expectation value of normal ordered operators is zero. ††=−δδ † δδδδ −+ †† + δδ − ††† + aaaajikl ikjl aa ljik jkil jkli aaaa kjil jlki aaaaaa klji 0 0 †††=−δδ δδδδ −+ † 0aaaajikl 0 ikjl 00 aa lj ik jkil jk 00 aa li 0 0 0 +†δ − δ † + †† 0aakj 0 il jl 0 aa ki 0 0 aaaa klji 0 =δδ − δδ ik jl jk il Exactly the result we had in first quantization Many -particle operators in second quantization † ai 0 one-particle state † † States ai a j 0 two-particle state described by Slater determinants † †> † N-particle state in first quantization ai a j a n 0 Operators First quantizaiton Second quantizaiton N One-particle = = † F f (ri ) F faaij i j operator i=1 i, j 1 Two-particle G= g( r ) = 1 † † ij G gijkl aaaa i j l k operator 2 ≠ i j 2 i, j = gijkl g jilk 5 Many -particle operators in second quantization First and second quantization description must produce identical results; however, is it more convenient to use second quantizati on for calculation of properties of many -electro systems as the antisymmetrization properties are carried by the operators rather than the wave functions as in the case of Slater determinants. = † = 1 † † F faaij i j G gijkl aaaa i j l k i, j 2 i, j = = 3ψ † ψ fab af b — d r a()r f (r ) b ()r = = 3 3†ψψ † ψψ gabcd abg cd— d r1212 — d r ab()rr () g (r 12 ) cd( rr 1 ) (2 ) The rules for calculating matrix elements are equivalent, for example: =1 †† †† = − abG abƒ gijkl0 aaaaaaaa b a i j l k a b 0 g abab g abba 2 ijkl Examples of one and two -particle operators First quantizaiton Second quantizaiton N N = = ε † 1 H0 ƒ h i H0 ƒ i a i a i i=1 i=1 =−1 ∇2 − Z hi i 2 ri eigenvalue of hi 2 Coulomb (1/r 12 ) interaction: two-particle operator 1 1 H'= g aaaa† † H ' = ƒ ijkl i j l k 2 ijkl r12 two-electron matrix element of the Coulomb potential 1/r 12 = 3 3†ψψ † 1 ψψ gabcd— drdr1212 — a()()rr b c()() rr 12 d r12 6 He -like systems revisited N Two-electron state ab = a † a † 0 is an eigenfunction of = ε † a b H0 i a i a i (0) H0 with an eigenvalueE =ε + ε : i=1 ab a b =(ε + ε ) H0 aba b ab However, it is not necessarily an angular momentum eigenstate. L2 S2 Lets construct eigenstates of { H, , Lz, ,S z } from | ab > states. = + L la l b First, we couple la and lb to construct eigenstates L2 = + of , Lz with eigenvalues L(L+1) and M L S sa s b Second, we couple s and s to construct eigenstates S=0: singlet state a b of S2, S with eigenvalues S(S+1) and M S=1: triplet states z S sa=sb=1/2 S=0,1 He -like systems: construction of coupled states = † † ab aa a b 0 Therefore, the coupled states are given by the sum over magnetic moments which contains two Clebsch-Gordon coefficients: µ lama ½ a =η † † ab, LMLS , SM − − aa a b 0 LM SM ma m bµ ab µ L S l m ½ µ Normalization factor b b b ab, LM , SM ab , LM , SM =η2 ( 1(1) + − L+ S δ δ ) LS LS nnllab ab ≠ ≠ À 1na nl ba , l b η = Œ à 1 = = Œ Identical orbitals na n ba, l l b Õ 2 7 He -like systems: First -order energy µ lama ½ a =η † † ab, LMLS , SM − − aa a b 0 LM SM ma m bµ ab µ L S µ lbmb ½ b The first-order energy is given by (1) = E ab,, LMLS SM H ',, ab LM LS SM = 1 † † H' gijkl aaaa i j l k 2 ijkl = 3 3†ψψ † 1 ψψ gabcd— drdr1212 — a()()rr b c()() rr 12 d r12 Coulomb matrix element First, lets consider Coulomb matrix element = 3 3†ψψ † 1 ψψ gabcd— drdr1212 — a()()rr b c()() rr 12 d r12 ψ ψ= θ φ The functions are given by nlm()r R nl () r Y lm (,) The 1/r 12 can be expanded as 1∞ 4 π r k k = < Y* (θφ , ) Y ( θφ , ) ƒ+ k +1 ƒ kq11 kq 22 r12 k=0 2 k 1 r > q =− k This expression may be re-written using C-tensors defined by 4π Ck () rˆ = Y (,)θ φ q(2k + 1) kq 1 1 ∞ r k k = =< ( − 1)q C k( rCˆ ) k ( r ˆ ) − ƒk +1 ƒ q1− q 2 r12r 1 r 2 k=0 r > q =− k 8 Coulomb matrix element ψ We now substitute the expressions for and 1/r 12 back into our matrix element and separate dr and dΩ integrals 1 ∞ r k k = < − q kˆ k ˆ ψ (r) = R( r )Y (θ, φ ) ƒ k +1 ƒ ( 1) Cq ( r1) C −q (r 2 ) nlm nl lm r12 k =0 r> q=− k = 3 3ψψ † † 1 ψψ R( abcd ) gabcd— drd1212 — r a()()rr b c()() rr 12 d k r12 ∞ ∞ ∞ r k radial = drr 2 drrR 2 () rR () r< R () r R ()r integral ƒ —1122 — nlaa 1 nl bb 2k +1 nl cc 1 nld d 2 k=0 0 0 r> k q k k × (− 1) dΩ Y(θφ , ) C ( θφ , ) Y ( θ ,φ ) ƒ — 1lma a 11 q11 lm c c 11 lmaa C qcc lm q=− k k k dΩ Y(θ ,φ ) C − ( θφ , ) Y ( θφ , ) — 2lmb b 22 q22 lm d d 22 lmbb C − qdd lm Coulomb matrix element ∞ k = − q k k gabcdƒ Rabcd k( ) ƒ ( 1) lmClm a a q c c lmC b b − q lm d d k=0 q =− k Next, we use Wigner-Eckart theorem for both of the matrix elements: lama lbmb ∞ k = − q k k gabcdƒ Rabcd k ( ) ƒ ( 1) − − lCllCla cb d k=0 q =− k k q k -q lcmc ldmd lbmb lbmb k− q We use − = (− 1) − Note: k and q are integers k -q k q ldmd ldmd 9 Coulomb matrix element lbmb lama ∞ k g= Rabcd( ) ( − 1)k − lCllClk k abcd k − k q a cb d k=0 q =− k k q ldmd lcmc lama lbmb ∞ = − k k k ( 1)Rk ( abcd ) l a C l cb l C l d − + k =0 k lcmc ldmd Xk ( abcd ) lama lbmb ∞ g= − + X( abcd ) abcd k k k =0 lcmc ldmd Summary: Coulomb matrix element (non -relativistic case) lama lbmb ∞ g= − + X( abcd ) abcd k k k =0 lcmc ldmd = − k k k Xk( abcd )(1) R k ( abcd ) l acbd C l l C l ∞ ∞ r k Rabcd( )= drr 2 drrR 2 ()() rR r< R ()() rR r k —1122 — nlaa 1 nl bb 2k +1 nl cc 1 nl dd 2 0 0 r> ≈l k l ’ k =−l1 + + 1 2 lCl12( 1) (2 l 12 1)(2 l 1) ∆ ÷ «0 0 0 ◊ 10 Back to He -like systems µ lama ½ a =η † † ab, LMLS , SM − − aa a b 0 LM L SM S ma m bµ ab µ µ Assume lbmb ½ b la=la’ l =l (1) = b b’ E ab,, LMLS SM H ',, ab LM LS SM µ µ lama ½ a lama’ ½ a’ =η 2 − − − − LM L SM S LM L SM S mmababµµ mm ab' ' µµ ab '' µ µ lbmb ½ b lbmb’ ½ b’ ×()gδδ − g δδ abab''µµµµaabb'' abba '' µµµµ abba '' =1 † † = − H' gaaaaijklijlk ; abGab g abab g abba 2 ijkl Sum over µ’s: Term 1 µ µ ½ a ½ a’ Term 1: δ δ µµaa' µµ bb ' µµab µ a' µ b ' − − SM S SM S µ µ ½ ½ b ½ b’ SM S SM =(2S + 1) S = 1 + - ½ We used orthogonality relation to evaluate this diagram j1 j ‘ m ‘ 3 3 + j3m3 = 1 δ δ + j33' j mm 3 ' 3 − 2j3 1 j2 11 Sum over µ’s: Term 2 µ b µ µ ½ a ½ a’ δ δ Term 2 : µµ µµ − − ab' ba ' SM SM µµab µ a' µ b ' S S µ µ ½ b ½ b’ ½ µ a SM S SM =+−(2S 1)( 1)S +1 S =−−( 1) S + - ½ Extra phase factor First -order energy: He -like systems lama lama’ Assume E(1)=η 2 − − la=la’ mma' b ' mm ab k LM L LM L lb=lb’ lbmb lbmb’ lama’ lbmb’ lama’ lbmb’ ×+ − S − + ( − Xk ( abab ) + ( 1) Xk ( abba ) ) k k lbmb lama lama lbmb where we substituted Coulomb matrix elements g into our formula lama lbmb ∞ g= − + X( abcd ) abcd k k k =0 lcmc ldmd 12 Sum over m ’s: Term 1 lama lama’ lama’ lbmb’ = − − − + LM LM ma' m b ' mm ab L L k l m l m lbmb lbmb’ a a b b rotate lama − lama’ to the right lama lama’ + =(2L+1) − 1) Remove triangle (get 6-j symbol) k LM L LM L 2) Use orthogonality relation lbmb’ (get factor 1/(2L+1) lbmb + lbmb lbmb’ + + + Àl l L ¤ =( − 1) Lkla l b Ãa b ‹ Õlb l a k › Sum over m ’s: Term 2 lama lama’ lama’ lbmb’ = ƒ ƒ − − − + LM LM ma' m b ' mm ab L L k l m l m lbmb lbmb’ b b a a + + Àl l L ¤ =( − 1) k la l b Ãa b ‹ Õla l b k › The calculation is very similar to Term1, only need to switch a and b lines in the first angular diagram.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us