Chapter 22 the Binomial Series

Chapter 22 the Binomial Series

CHAPTER 22 THE BINOMIAL SERIES EXERCISE 93 Page 195 1. Use Pascal's triangle to expand (x – y)7 From Pascal’s triangle on page 195 of the textbook, (a+=++++++ x )6 a 6 6 ax 5 15 ax 42 20 ax 33 15 ax 24 6 ax 5 x 6 Thus, (a+=+++++++ x )7 a 7 7 ax 6 21 ax 52 35 ax 43 35 ax 34 21 ax 25 7 ax 6 x 7 and (xyx− )776 =+ 7()21()35()35()21()7()() xy −+ xy 52 −+ xy 43 −+ xy 34 −+ xy 25 −+−+− xy 6 y 7 i.e. (x−=− y )7 x 7 7 xy 6 + 21 xy 52 − 35 xy 43 + 35 xy 34 − 21 xy 25 + 7 xy 6 − y 7 2. Expand (2a + 3b) 5 using Pascal’s triangle. 5 From page 195 of the textbook, (a+=+++++ x) a55 ax 4 10 ax 32 10 ax 23 5 ax 4 x 5 Thus, replacing a with 2a and x with 3b gives: 5 5 4 32 23 4 5 (2ab+=+++ 3) ( 2 a) 5( 2 ab) ( 3) 10( 2 ab) ( 3) 10( 2 ab) ( 3) ++ 5( 2 ab)( 3) ( 3 b) = 32a5++ 240 ab 4 720 ab32 + 1080 ab23 ++ 810 ab4 243 b 5 345 © 2014, John Bird EXERCISE 94 Page 197 1. Use the binomial theorem to expand (a + 2x)4 4 (43)( ) 2( 432)( )( ) 34 (ax+ 2 ) = a43++42 a( x) a2( 2 x) + ax(2) +( 2 x) 2! 3! = a4++8 a 3 x 24 a 22 x + 32 ax 3 + 16 x 4 2. Use the binomial theorem to expand (2 – x)6 6 (65)( ) 23(654)( )( ) (6)(5)(4)(3) (2 − x) = 26+ 6(2) 5( −+xx) (2)4( −) + (2)3(− x) + (2)24 (− x ) 2! 3! 4! (6)(5)(4)(3)(2) + (2)()()−xx56 +− 5! = 64−+ 192x 240 x2 − 160 x 3456 +−+ 60 x 12 xx 3. Expand (2x – 3y)4 4 4 3 (43)( ) 22(432)( )( ) 3 4 (2xy− 3) =( 2 x) + 42( x) ( − 3 y) + ( 2 x) (− 3 y) + (2x)(− 3 y) +−( 3 y) 2! 3! = 16x4−+ 96 x 3 y 216 x 22 y − 216 xy 3 + 81 y 4 5 2 4. Determine the expansion of 2x + x 5 23 2 54 22(54)( ) 3 (543)( )( ) 2 2 2x+= ( 2 xx) + 52( ) + (2 x) + (2x) x xx2! 3! x 45 (5432)( )( )( ) 22 ++(2x) 4! xx 320 160 32 = 32xxx53+ 160 + 320 +++ xxx35 5. Expand (p + 2q)11 as far as the fifth term. 346 © 2014, John Bird (11)( 10) 23(11)( 10)( 9) (11)(10)(9)(8) (p + 2q)11 = p11++11 p 10 ( 2 q) pq9 (2 ) +pq8 (2 ) + pq7(2 ) 4 2! 3! 4! = p11++22 p 10 q 210 pq9 2 + 1320 pq8 3 + 5280 pq7 4 13 q 6. Determine the sixth term of 3p + 3 n nn( −−1)( n 2) to ( r − 1) terms The 6th term of (ax+ ) is axnr−−( 1) r − 1 (r −1!) 13 5 5 q (13)( 12)( 11)( 10)( 9) 13− 5 q 8 q Hence, the 6th term of 3p + is: (3p) = 1287( 3p) 3 5! 3 3 = 34749 pq85 7. Determine the middle term of (2a – 5b)8 With power 8 there will be 9 terms in the series. The middle term will be the fifth term (2a – 5b)8 (87)( ) 23(876)( )( ) (8)(7)(6)(5) = (2a )87+ 8(2 ab )( −+ 5) (2 ab )6( − 5 ) + (2 ab )5(− 5 ) + (2ab )44 (− 5 ) 2! 3! 4! (8)(7)(6)(5) Hence, the fifth term is: (2ab )44 (− 5 ) = 700000ab44 4! 8. Use the binomial theorem to determine, correct to 4 decimal places: 8 7 (a) (1.003) (b) (0.98) 88(87)( ) ( 876)( )( ) (a) (1.003) =( 1 + 0.003) = 1++ 8(0.003) (0.003)23 +(0.003) + ... 2! 3! = (1+ 0.024 + 0.000252 + 0.000001512 += ...) 1.0242535... = 1.0243, correct to 4 decimal places. 347 © 2014, John Bird (b) 77 (76)( ) 2( 765)( )( ) 3( 7654)( )( )( ) 4 (0.98) =−=+−+( 1 0.02) 1 7( 0.02) ( −+0.02) ( −+0.02) ( −+0.02) ... 2! 3! 4! = 1 – 0.14 + 0.0084 – 0.00028 + 0.0000056 – … = 0.8681, correct to 4 decimal places 9. Evaluate (4.044)6 correct to 2 decimal places. 6 660.044 6 (4.044) =+=+=+( 4 0.044) 4 1 46 ( 1 0.011) 4 6(65)( ) 23( 653)( )( ) ( 7654)( )( )( ) 4 (1+=++ 0.011) 1 6( 0.011) ( 0.011) +(0.011) + (0.011) 2! 3! 4! (7)(6)(5)(4)(3) ++(0.011)5 ... 5! = 1 + 0.066 + 0.001815 + 0.00002662 + 0.000000512435 + 0.000000003382071 = 1.067842136... 6 6 6 + 6 Hence, (4.044) = 4( 1 0.011) = 4 (1.067842136...) = 4373.88, correct to 2 decimal places 348 © 2014, John Bird EXERCISE 95 Page 199 1 1. Expand in ascending powers of x as far as the term in x3, using the binomial theorem. (1− x ) State in each case the limits of x for which the series is valid. 1 −1(−−12)( ) 23( −−− 123)( )( ) =(1 −xx) = 1 +− ( 1)( − ) +( − x) + (− x) +... (1− x) 2! 3! = 1++xx23 + x +... and x < 1 1 2. Expand in ascending powers of x as far as the term in x3, using the binomial theorem. (1+ x ) 2 State in each case the limits of x for which the series is valid. 1 −2(−−23)( ) 23( −−− 234)( )( ) 2 =+(1xx) =−+ 1 2 ( x) + ( x) +... (1+ x) 2! 3! = 1−+ 2xx 323 − 4 x + ... and x < 1 1 3. Expand in ascending powers of x as far as the term in x3, using the binomial theorem. (2+ x )3 State in each case the limits of x for which the series is valid. −3 23 1 −3 x xx(−−34)( ) ( −−− 345)( )( ) x = (2+=x) 2−−33 1 + = 2 1 − 3 + + +... (2+ x )3 2 2 2! 2 3! 2 1 33 5 = 1−+xx23 − x +... 23 22 4 1 33 5 = 1−+xx23 − x +... 8 22 4 x The series is true provided < 1 i.e. x < 2 2 349 © 2014, John Bird 4. Expand 2 + x in ascending powers of x as far as the term in x3, using the binomial theorem. State in each case the limits of x for which the series is valid. 1/2 x x x 2 + x = 21+ = 21+ = 21+ 2 2 2 Using the expansion of (1 + x)n, 1/2 23 x 1xx (1/ 2)(− 1/ 2) (1/ 2)(−− 1/ 2)( 3 / 2) x 21+ = 2 [ ++ +... ] 2 2 2 2! 2 3! 2 xx23 x = 2 1+− + −... 4 32 128 x This is valid when < 1 i.e. x < 2 or –2 < x < 2 2 1 5. Expand in ascending powers of x as far as the term in x3, using the binomial theorem. 13+ x State in each case the limits of x for which the series is valid. 13 135 −− −−− 1 1 − 1 2223 222 = (1+ 3xx) 2 =+− 1 (3 ) + (3 x) + (3 x) ... 13+ x 2 2! 3! 3 27 135 = 1−+xx23 − x as far as the term in x3 2 8 16 1 The series is true provided 3x < 1 i.e. x < 3 6. Expand (2 + 3x)–6 to three terms. For what values of x is the expansion valid? −62 −6 3x 33 xx(−−67)( ) (2+ 3x) = 2−−66 1 + = 2 1 +− ( 6) + to three terms 2 2 2! 2 1 189 1 189 = 1−+ 9xx2 + ... = 1−+ 9xx2 + ... 246 64 4 350 © 2014, John Bird 3x 2 The series is true provided < 1 i.e. x < 2 3 7. When x is very small show that: 1 5 (1− 2x ) 15+ x 19 (a) ≈ 1 + x (b) ≈ 1 + 10x (c) ≈ 1 + x (1−−xx )2 (1 ) 2 (1− 3x ) 4 3 12− x 6 1 1 −−2 x =− −2 ≈+ + (a) 2 (1xx) ( 1) ( 12 x) 1 (11−−xx) ( ) 2 x ≈ 12++x ignoring the x2 term and above 2 5 ≈ 1+ x 2 (12− x) −4 (b) 4 =−−≈−+(12xx)( 13) ( 12 x)( 112 x) (13− x) ≈ 1 + 12x – 2x ignoring the x2 term and above ≈ 1 + 10x 11 15+ x − 5 2 (c) =+(15xx)23( 12 −) ≈+ 1 xx 1 + 3 (12− x) 23 25 ≈ 1++xx ignoring the x2 term and above 32 19 5 2 15+ 4 19 ≈ 1+ x += = 6 23 6 6 8. If x is very small such that x2 and higher powers may be neglected, determine the power series for xx+−483 5 (1+ x ) 3 11 3 11 3 3 xx+−48 −−1 xx 231 =+−(4xxx)23( 8) ( 1 +=+) 5 412 813 −( 1 +x) 5 3 5 (1+ x) 48 3 113xx ≈ ( 4)( 81)+−− ( x) ignoring the x2 term and above 24 38 5 xx3 x 15xx−− 5 72 x 62x ≈ 41+− − ≈ 41+ ≈ 41− 8 24 5 120 120 351 © 2014, John Bird 31x 31 ≈ 41− = 4 – x 60 15 9. Express the following as power series in ascending powers of x as far as the term in x2. State in each case the range of x for which the series is valid. 1− x (1+−xx )3 (1 3 ) 2 (a) (b) 1+ x (1+ x2 ) 11 13 − −− 11 1− x− xx22 2 22 (a) =−(11xx)22( +) ≈ 1 −+( −x) 1 −+ x2 1+ x 2 2! 2 2! as far as the term in x2 xx2 xx332 xxxxx2 22 = 11−− −+ ≈−+ 1 −+ − 28 28 28248 x2 ≈ 1−+x as far as the term in x2 2 The series is valid if x < 1 2 3 21 (1+−xx) ( 13) − (b) =+−+(1xxx)( 13)32( 1 2 ) (1+ x2 ) 21 − 33 2 x2 ≈ (1+xx) 1 −+ 2 ( −3 x) + ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us