Asymmetric Bimetallic Short.Pptx

Asymmetric Bimetallic Short.Pptx

11/20/10 Polymetallic Asymmetric Catalysts A review of the prominent catalytic systems MacMillan Group Meeting, November 17, 2010 Brian Ngo Laforteza Multimetallic Bifunctional Catalysis Defining the concept ■ What do we consider “bifunctional catalysis”? Catalyst 1 Substrate 1 ! Simultaneous activation of multiple reaction partners by different catalytically active centers ! Activation sites can either be in separate complexes or linked together Catalyst 2 Substrate 2 Tyr113' ■ Familiar examples 92 His 2- O OPO3 H O t-Bu S His94 O Brønsted base H 2+ N Zn Me N N R H H H Lewis acid O H N O O i-Pr i-Pr 155 His H O– Brønsted base R R' NC H O Glu73 ! Organocatalysis ! Enzymes: Class II Aldolase Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 15872. 1 11/20/10 Multimetallic Bifunctional Catalysis Defining the concept ■ What do we consider “bifunctional catalysis”? Catalyst 1 Substrate 1 ! Simultaneous activation of multiple reaction partners by different catalytically active centers ! Activation sites can either be in separate complexes or linked together Catalyst 2 Substrate 2 ■ Substrates must be activated by different catalytic centers, unlike the following examples: Me R E O O O Me ! Only one Rh center acts as OR E O O RO O O ! One Ti center activates/ a carbene binding site Ti Ti Rh Rh R R O O O coordinates both peroxide O O ! Other Rh site acts as an O and allylic alcohol Me O O extra “ligand” for stability O t-Bu EtO Me Rhodium carbene chemistry Sharpless asymmetric epoxidation Dinuclear Zinc Proline-Derived Catalysts Barry M. Trost ■ Trost pioneered the use of dinuclear zinc complexes as bifunctional catalysts Ph OH HO Ph Ar Et Ph Ph O O Ar Ar Zn Zn N OH N Ar ! C2-symmetric Bis-ProPhenol ligand ZnEt N O N 2 ! One zinc center believed to act as Lewis acid ! Remaining zinc-alkoxide acts as Brønsted base Me Me 1 ■ Very few structural and mechanistic studies have been done ! Addition of 2 equiv. of ZnEt2 liberates 3 equiv. of ethane ! Addition of H2O liberates fourth equiv. of ethane from catalyst Me Ph O O ! Addition of acetic acid results in proposed structure O O Ph Zn Ph Zn Ph ! Electrospray mass spectrometry provides mass peaks N O N consistent with molecular formula Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003. Me Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367. 2 11/20/10 Dinuclear Zinc Proline-Derived Catalysts Barry M. Trost ■ Trost pioneered the use of dinuclear zinc complexes as bifunctional catalysts ! C2-symmetric Bis-ProPhenol ligand ! One zinc center believed to act as Lewis acid ! Remaining zinc-alkoxide acts as Brønsted base ■ Kuiling Ding – first crystal structure of related complex NO2 THF Ph O O O Ph Zn Ph Zn Ph N O N THF Me Xiao, Y.; Wang, Z.; Ding, K. Chem. Eur. J. 2005, 11, 3668. Dinuclear Zinc Proline-Derived Catalysts Enantioselective aldol reactions ■ Direct catalytic enantioselective aldol Ph OH HO Ph Ar Et Ph Ph O O10 moAl%r ZnEt2 Ar Zn Zn N OH N O O 5 mol%A rligand 1 OH O + N O N ZnEt2 R H Me Ar 15 mol% Ph3P=S R Ar molecular sieves 24–79% yield THF, 5 °C up to 99% ee Me Me 1 Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003. ■ Syn-selective aldol using α-hydroxy ketones as donors 10 mol% ZnEt2 O O 5 mol% ligand 1 OH O + HO up to 35:1 dr R H Ar molecular sieves R Ar up to 98% ee THF, –35 °C OH 62–97% yield Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367. 3 11/20/10 Dinuclear Zinc Proline-Derived Catalysts Proposed catalytic cycle ■ Proposed mechanism Ar R Ar O O H O O O Ar Zn Zn Ar Ar R H N O N Ar R O H Ar Et O O Ar O Ar O Me Ar O Ar Ar Zn Zn O O Ar O O Ar Ar Zn Zn Zn Ar Zn Ar Ar N O N Me Ar Ar N O N N O N Me Me Me Ar R O H Me O O Ar O Ar O O Ar OH O Zn Zn Me Ar Ar Ar R Ar N O N Me Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003. Dinuclear Zinc Proline-Derived Catalysts Enantioselective aldol reactions ■ Direct catalytic enantioselective aldol 10 mol% ZnEt2 O O 5 mol% ligand 1 OH O + R H Me Ar 15 mol% Ph3P=S R Ar molecular sieves 24–79% yield THF, 5 °C up to 99% ee Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003. ■ Syn-selective aldol using α-hydroxy ketones as donors 10 mol% ZnEt2 O O 5 mol% ligand 1 OH O + HO up to 35:1 dr R H Ar molecular sieves R Ar up to 98% ee THF, –35 °C OH 62–97% yield Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367. 4 11/20/10 Dinuclear Zinc Proline-Derived Catalysts Transition state hypothesis ■ Proposed transition state Ar H R O ! α-hydroxy ketone bridges both zinc metal centers O O O O ! Aldehyde coordinates to most sterically accessible Zn Zn face of catalyst N O N Me Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367. Dinuclear Zinc Proline-Derived Catalysts Other nucleophiles and electrophiles ■ Vinylogous nucleophility of butenolide O O 10 mol% Bis-ProPhenol O up to >20:1 dr + NO2 O R molecular sieves up to 95% ee NO2 THF, rt R R = aryl, styrenyl, alkyl 47–78% yield R O N O O ! Binds as bidentate bridging aromatic enolate O 10 mol% ZnEt2 O O O 5 mol% ligand 1 OH O Zn Zn O + HO up to 35:1 dr R H N O ANr molecular sieves R Ar up to 98% ee THF, –35 °C OH 62–97% yield Me Trost, B. M.; Hitce, J. J. Am. Chem. Soc. 2001, 123, 3367. 5 11/20/10 Dinuclear Zinc Proline-Derived Catalysts Other nucleophiles and electrophiles ■ Desymmetrization of 1,3-diols 10 mol% ZnEt2 OH OBz OH OH O 5 mol% ligand + O Ph PhMe R R H R = alkyl, aryl 78–99% yield 70–93% ee R O Ph O ! Diol coordinates both zinc centers O O O ZnH Zn O N O N Me Trost, B. M.; Malhotra, S.; Mino, T.; Rajapaksa, N. S. Chem. Eur. J. 2008, 123, 3367. Dinuclear Zinc Proline-Derived Catalysts Other nucleophiles and electrophiles ■ Desymmetrization of 1,3-diols 10 mol% ZnEt2 OH OBz OH OH O 5 mol% ligand + OBz PhMe R R H R = alkyl, aryl 78–99% yield 70–93% ee R O Ph O ! Diol coordinates both zinc centers O O O ZnH Zn O ! Proton transfer proposed to account for N O N sense of induced stereochemistry Me Trost, B. M.; Malhotra, S.; Mino, T.; Rajapaksa, N. S. Chem. Eur. J. 2008, 123, 3367. 6 11/20/10 Dinuclear Zinc Proline-Derived Catalysts Other nucleophiles and electrophiles ■ Select examples O OH NO2 R1 R1 + NO2 H + H TMS R R' R N N H TMS H R' R2 R3 R2 R3 Asymmetric alkynylation Asymmetric Friedel–Crafts alkylation J. Am. Chem. Soc. 2006, 128, 8-9. J. Am. Chem. Soc. 2008, 130, 2438. O O O PPh2 O OH PPh O HN + 2 + CH3NO2 N NO2 Ar R H R Ar R OH R H OH Asymmetric Henry reaction Asymmetric Mannich reaction Angew. Chem. Int. Ed. 2006, 41, 861. J. Am. Chem. Soc. 2006, 128, 2778. Metal Salen Complexes as Bifunctional Catalysts Eric N. Jacobsen ■ Ring-opening of meso epoxides with TMSN3 O 2a or 2b TMSO N3 N N TMSN3 Cr t-Bu O Y O t-Bu X Et2O or TBME X t-Bu t-Bu 2a: Y=Cl X= CH2, CHR, CH2CH2, CH=CH, N-R, O, C=O 2b: Y=N3 ■ Preliminary investigations support activation of TMS-N3 by Cr(salen) complex ! Catalyst 2a is precatalyst, while 2b is active catalyst in reaction mixture - IR studies: observance of Cr-N3 stretch - use of catalyst 2b directly affords product Can Cr(salen) complex also act as a Lewis acid? Hansen, K. B.; Leighton, J. L.; Jacobsn, E. N. J. Am. Chem. Soc. 1996, 118, 10924. 7 11/20/10 Metal Salen Complexes as Bifunctional Catalysts Support for cooperative catalysis ■ Crystal structure of 2b∙THF N3 N N Cr t-Bu O O t-Bu O t-Bu t-Bu 2b•THF Supports possibility of Lewis acid activation of epoxides ■ Kinetic studies ! Second-order rate dependence on catalyst Pdt (%ee) ■ Investigation of enantiomeric purity of 2b vs. enantioselectivtiy of reaction ! Significant non-linear effects* observed (supports interaction between two chiral entities) 2b (%ee) Hansen, K. B.; Leighton, J. L.; Jacobsn, E. N. J. Am. Chem. Soc. 1996, 118, 10924. *Nonlinear effects: Guillaneux, D.; Zhao, S. H.; Samuel, O.; Rainford, D.; Kagan, H. B. J. Am. Chem. Soc. 1994, 116, 9430. Metal Salen Complexes as Bifunctional Catalysts Hydrolytic Kinetic Resolution of Terminal Epoxides ■ Hydrolytic kinetic resolution (HKR) of terminal epoxides, and 1,2-diol synthesis <1 mol% 3a N N OH O H2O (0.5–0.7 eq) O Co (±) + R OH t-Bu O O t-Bu R solvent-free R X t-Bu t-Bu 84–99% ee 86–98% ee 3a: X = OAc 3b: X = OH ■ Mechanistic investigations ! Both enantiomers bind to catalyst with similar affinity - selectivity arises from only one of the epoxide complexes ! Ratio of 3a to 3b throughout reaction plays crucial role in reaction rate - Rate = kcat’f[Co–OH]tot[Co–X]tot - 1:1 ratio optimal - ratio is affected by reactivity of counterion (X = OAc vs.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    25 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us