Radiometry, Radiosity

Radiometry, Radiosity

Radiometry and radiosity © 1996-2018 Josef Pelikán CGG MFF UK Praha [email protected] http://cgg.mff.cuni.cz/~pepca/ Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 34 Global illumination, radiosity based on physics – energy transport (light transport) in simulated environment – first usage of radiosity in image synthesis: Cindy Goral (SIGGRAPH 1984) ➨ radiosity is able to compute diffuse light, secondary lighting, .. ➨ basic radiosity cannot do sharp reflections, mirrors, .. time consuming computation – Radiosity: light propagation only, RT: rendering Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 2 / 34 Radiosity - examples © David Bařina (WiKi) Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 3 / 34 Basic radiometry I Radiant flux, Radiant power d Q Φ = [ W ] d t Number of photons (converted to energy) per time unit (100W bulb: ~1019 photons/s, eye pupil from a monitor: 1012 p/s) dt Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 4 / 34 Basic radiometry II Irradiance, Radiant exitance, Radiosity d Φ( x) E (x) = [ W/m2 ] d A( x) Photon areal density (converted to energy) incident or radiated per time unit dA dt dA Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 5 / 34 Basic radiometry III Radiance d 2 Φ(x ,ω) 2 L( x ,ω) = ⊥ [ W/m /sr ] d Aω ( x) d σ(ω) Number of photons (converted to energy) per time unit passing through a small area perpendicular to the direction w. Radiation is directed to a small cone around the direction w. Radiance is a quantity defined as a density with respect to dA and with respect to solid angle ds(w). Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 6 / 34 Radiance I ➨ received/emitted radiance in direction : 2 – Lin() (Le(), Lout()) [ W/(m · sr) ] 2 N d L x, out dA d cos d dB out d cos x dI dA dA cos Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 7 / 34 Solid angles dA r2 sin d d d dA d sin d d r r2 d [] .. steradian (sr) the whole sphere .. 4 sr Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 8 / 34 Radiance II Φ(x ,ω) ∝ d σ(ω) sensor lens d σ(ω) x ω pixel Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 9 / 34 Radiance III ⊥ Φ(x ,ω) ∝ d Aω (x) ⊥ sensor d Aω x lens ω n dA θ pixel ω ⊥ d Aω = d A⋅cosθ Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 10 / 34 Energy preservation law (ray / fiber) L1() L1 d1 dA1 L2 d 2 dA2 r emitted received d1 dA1 power power L2() d 2 dA2 Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 11 / 34 Energy preservation law (ray / fiber) L1() L1 d1 dA1 L2 d 2 dA2 r T d dA d dA d 1 1 2 2 dA 1 1 dA dA 1 2 r2 L2() ray capacity L1 L2 d 2 dA2 ray ... radiance L Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 12 / 34 Light measurement ➨ measured quantity is proportional to radiance from visible scene sensor: area A2 aperture: area A1 R Lin A, cos d dA Lin T A2 Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 13 / 34 BSDF (Local transfer function) („Bidirectional Scattering Distribution Function“, older term: BRDF) L ( ) n i i Lo(o) dswi o i d L (ω ) d L (ω ) f (ω →ω ) = o o = o o s i o d E (ω ) ⊥ i Li (ωi) cosθi d σ (ωi) Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 14 / 34 Helmholtz law (reciprocity) ➨ for real surfaces (physically plausible): f in out f out in ➨ general BSDF needs not be isotropic (invariant to rotation around surface normal) – metal surfaces polished in one direction, .. f in,in,out,out f in,in ,out,out Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 15 / 34 Local rendering equation L (x, ) n i i Lo(x,o) ray-cast dswi Ls(x,o) xi vacuum: Li(x,) = Lo(xM(x,w),-) Le(x,o) = L (y,-) x o own emission at x Lo( x ,ωo) = Le ( x ,ωo) + ⊥ +∫ Lo( y ,−ωi)⋅f s( x ,ωi →ωo)⋅d σ x (ωi) Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 16 / 34 Radiance received from a surface N y dA y yo Nx xi cosyo dA di x y 2 x cos cos Geometric term: G y,x yo xi x y 2 Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 17 / 34 Radiance received from a surface Lo x, o integral over all incoming directions Le x, o f x,i o Li x,i cosxi di Le x, o f x,i o Lo y,i G y,x dA S integral over an emitting surface (assumption: the whole surface S is visible from x) Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 18 / 34 Reflected light N z z N N y dA x zi y yo xo xi x if y sees x Terminology: L y,x Lo y,x y Li x, y x f y,x, z f x, y x z x Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 19 / 34 Indirect radiance equation 1 if y sees x V y,x 0 else L x, z Le x, z f y,x, z L y,x G y,x V y,x dA S BRDF geometric own (emitted) terms radiant exitance Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 20 / 34 Radiosity equation ➨ assumption – ideal diffuse (Lambertian) surface: – BRDF is not dependent on incoming/outgoing angles – outgoing radiance L(y,) independent on direction L x, z Le x, z f x L y,x G y,x V y,x dA S L x, z B x , Le x, z E x , f x x G y,x V y,x B x E x x B y dA S Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 21 / 34 Discrete solution B x E x x B y g y,x dA S G y,x V y,x where g y,x solution B is infinit-dimensional ➨ discretization of the task: – Monte-Carlo ray-tracing (dependent on camera) – classical radosity (finite/boundary elements FEM) Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 22 / 34 General radiosity method object surfaces divided into set of elements definition of knot points on elements – radiosity will be computed there choice of an approximation method and error metric – basis functions for convex blend from knot points coefficients of linear equation system – “form-factors” Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 23 / 34 General radiosity method solution of linear equation system – result: radiosity in knot points reconstruction of values on whole surfaces – linear blends using basis functions and knot point radiosities rendering of results (arbitrary view) – light is proportional to radiosity Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 24 / 34 Remarks step is performed in algorithm design phase – does not appear in an implementation some advanced methods do not strictly follow the sequence to – sometimes a computation flow goes back to some previous phase, some phases can be iterated,.. Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 25 / 34 Radiosity approximation constant bilinear quadratic (knots in (knots in (more knots centers) vertices) in centers..) Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 26 / 34 Constant elements ➨ on every element Ai constant reflectivity is assumed , radiosity B – average of B(x): – terminology: i, Bi for i = 1 .. N average over B x E x x B y g y,x dA area Ai S 1 N B E B g y,x dA dA i i i A j j i i j1 Ai Aj radiosity received in point x (lying on Ai) Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 27 / 34 Basic radiosity equation switching sum and integral: N 1 Bi Ei i Bj g y,x dAj dAi Ai j1 Ai Aj geometric term – form factor Fij (part of energy irradiated from Ai received directly by Aj) N B E B F W i i i j ij m2 j1 Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 28 / 34 Intuitive derivation N BiAi EiAi i BjAj Fji W j1 emitted power = own power + reflected power reciprocal rule: Aj Fji Ai Fij N 1 BiAi EiAi i Bj Fij Ai Ai j1 N B E B F W i i i j ij m2 j1 Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 29 / 34 System of linear equations N Bi i Bj Fij Ei i 1.. N j1 1 1F1,1 1F1,2 .. 1F1,N B1 E1 2F2,1 1 2F2,2 .. 2F2,N B2 E2 .. .. .. .. .. .. NFN,1 NFN,2 .. 1 NFN,N BN EN vector of unknown vars [Bi] Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 30 / 34 System of linear equations ➨ for planar (convex) surfaces: Fii = 0 – the diagonal contain only unit values ➨ nondiagonal items are usually very small (abs value) – matrix is “diagonally dominant” system is stable and can be solved by iterative methods (Jacobi, Gauss-Seidel) ➨ for light change (light sources) [Ei] system needs not to be fully re-computed, only reverse phase could be done Radiometry 2018 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 31 / 34 Radiosity to vertices Even in constant element approach usage of some color interpolation method is recommended (Gouraud) (B +B )/2 1 2 B2 B1 B B 2 1 ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us