Torque Precession Precession

Torque Precession Precession

Torque B Bioengineering 280A" µ Principles of Biomedical Imaging" For a non-spinning magnetic moment, the torque will try to align the moment with " magnetic field (e.g. compass needle) Fall Quarter 2012" MRI Lecture 2" N N = µ x B Torque TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 Precession Precession Analogous to motion of a gyroscope dµ Torque = µ x γB dt Precesses at an angular frequency of N = µ x B B dS ω = γ Β = µ x B dS dt = N dµ This is known as the Larmor frequency. dt = µ x γB dt dµ µ Change in µ = γ S Angular momentum Relation between magnetic moment and angular momentum http://www.astrophysik.uni-kiel.de/~hhaerte#mpg_e/gyros_free.mpg TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 1 Magnetization Vector RF Excitation Vector sum of the magnetic moments over a volume. For a sample at equilibrium in a magnetic field, the transverse components of the moments cancel out, so that there is only a longitudinal component. Equation of motion is the same form as for individual moments. 1 M = ∑µi V protons in V dM = γM × B dt Hansen 2009 http://www.drcmr.dk/main/content/view/213/74/ € TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 € Free precession about static field Free precession about static field dM B = M × γB " % " dMx dt% Bz My − By Mz dt $ ' $ ' dM dt = γ B M − B M iˆ ˆj kˆ $ y ' $ x z z x ' dΜ $ ' #$ dMz dt&' #B y Mx − Bx My& = γ Mx My Mz Μ " % B B B 0 Bz −By " Mx% x y z $ '$ ' = γ$− Bz 0 Bx ' My % iˆ B M − B M ( $ ' ' ( z y y z ) * $ B −B 0 '$ M ' ˆ # y x &# z & = γ' − j (Bz Mx − Bx Mz )* ' ˆ * & k (By Mx − Bx My ) ) € TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 € 2 Precession Gyromagnetic Ratios " dMx dt% " 0 B0 0%" Mx% $ ' $ '$ ' dM dt B 0 0 M $ y ' = γ$− 0 '$ y' Nucleus Spin Magnetic γ/(2π) Abundance #$ dMz dt&' #$ 0 0 0&'#$ Mz &' Moment (MHz/Tesla) 1H 1/2 2.793 42.58 88 M Useful to define M ≡ Mx + jMy jMy € Mx 23 dM dt = d dt(Mx + iMy ) Na 3/2 2.216 11.27 80 mM € = − jγB0 M 31P 1/2 1.131 17.25 75 mM Solution is a time-varying phasor M(t) = M(0)e− jγB0t = M(0)e− jω 0t € Question: which way does this rotate with time? Source: Haacke et al., p. 27 TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 € Larmor Frequency Notation and Units ω = γ Β Angular frequency in rad/sec 1 Tesla = 10,000 Gauss Earth's field is about 0.5 Gauss f = γ Β / (2 π) Frequency in cycles/sec or Hertz, Abbreviated Hz 0.5 Gauss = 0.5x10-4 T = 50 µT For a 1.5 T system, the Larmor frequency is 63.86 MHz which is 63.86 million cycles per second. For comparison, γ = 26752 radians/second/Gauss KPBS-FM transmits at 89.5 MHz. γ = γ /2π = 4258 Hz/Gauss Note that the earth’s magnetic field is about 50 µΤ, so that a 1.5T system is about 30,000 times stronger. = 42.58 MHz/Tesla TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 € 3 Gradients MRI Gradients Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field Bz=B0, all the spins precess at the same frequency (ignoring chemical shift). Gradient coils are used to add a spatial variation to Bz such that Bz(x,y,z) = B0+Δ Bz(x,y,z) . Thus, spins at different physical locations will precess at different frequencies. http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/fullarticle.html TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 Gradient Fields Interpretation ∂Bz ∂Bz ∂Bz B (x,y,z) = B + x + y + z ∆Bz(x)=Gxx z 0 ∂x ∂y ∂z = B + G x + G y + G z z 0 x y z x y € Spins Precess Spins Precess at γB0 Spins Precess at at γB0- γGxx M(t) = M(0)e− jγB0t at γB0+ γGxx (slower) (faster) − jω0t ∂Bz ∂B = M(0)e G 0 z − jγ(B −G x)t − jγ(B +G x)t z = > G = > 0 M(t) = M(0)e 0 x M(t) = M(0)e 0 x ∂z y y ∂ − j(ω 0 −Δω )t − j(ω 0 +Δω )t = M(0)e = M(0)e TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 € € € € 4 Rotating Frame of Reference Spins Reference everything to the magnetic field at isocenter. There is nothing that nuclear spins will not do for you, as long as you treat them as human beings. Erwin Hahn TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 Phasor Diagram Interpretation ∞ Imaginary G(kx ) = ∫ g(x)exp(− j2πkx x)dx -2∆x -∆x 0 ∆x 2∆x −∞ % % 0 ( ( θ = −2πkx x exp' − j2π' * x* & & 8Δx ) ) Real € θ = −2πkx x € % % 1 ( ( exp' − j2π' * x* & & 8Δx ) ) € kx =1; x = 0 x =1/4 x =1/2 x = 3/2 2πk x = 0 2πkx x = π /2 2πkx x = π 2πkx x = 3π /4 € % % 2 ( ( x € exp' − j2π' * x* & & 8Δx ) ) € € € € € ∆B (x)=G x Faster θ = 0 θ = −π /2 θ = π θ = π /2 Slower z x TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 € € € € 5 kx=0; ky=0 kx=0; ky≠0 Fig 3.12 from Nishimura TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 Hanson 2009 Phase with time-varying gradient Hanson 2009 TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 6 K-space trajectory Gx(t) ky t ky (t4 ) t1 t2 Gy(t) ky (t3 ) € kx t3 t4 k (t ) k (t ) x €1 x 2 € € TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 Nishimura 1996 K-space trajectory Gx(t) ky t t1 t2 Gy(t) kx TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 7 Spin-Warp Gx(t) k-space ky Image space k-space t1 Gy(t) k x y ky x k Fourier Transform x TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 k-space ky kx TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 8 RF Spin-Warp Pulse Sequence Spin-Warp Gx(t) Gx(t) t1 ky Gy(t) Gy(t) ky Gy(t) kx TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 (a) (b) y 1 0 1 0 1 0 1 0 1 x (c) (d) (e) Hanson 2009 TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 9 Gradient Fields Static Gradient Fields Define In a uniform magnetic field, the transverse magnetization is given by: ˆ ˆ − jω t −t /T G ≡ G iˆ + G ˆj + G k r ≡ xiˆ + yˆj + zk M(t) M(0)e 0 e 2 x y z = So that In the presence of non time-varying gradients we have Gx x + Gy y + Gzz = G ⋅ r € € € − jγB ( r )t Also, let the gradient fields be a function of time. Then M(r ) = M(r ,0)e z e− t /T2 ( r ) the z-directed magnetic field at each point in the M(r ,0)e− jγ ( B0+G ⋅r )te− t /T2 ( r ) = − jω t − jγG ⋅r t − t /T ( r ) € volume is given by : = M(r ,0)e 0 e e 2 Bz (r ,t) = B0 + G (t)⋅ r TT. Liu, BE280A, UCSD Fall 2012 €TT. Liu, BE280A, UCSD Fall 2012 € Time-Varying Gradient Fields Phasors In the presence of time-varying gradients the frequency as a function of space and time is: ω(r ,t) = γBz (r ,t) = γB0 + γG (t)⋅ r (r ,t) = ω0 + Δω θ = 0 θ = −π /2 θ = π θ = π /2 € € € € € TT. Liu, BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 10 Phase Phase with constant gradient Phase = angle of the magnetization phasor Frequency = rate of change of angle (e.g. radians/sec) Phase = time integral of frequency t ϕ r ,t = − ω(r ,τ)dτ ( ) ∫0 t r ,t = −ω0 + Δϕ( ) Where the incremental phase due to the gradients is t t3 t 1 r ,t (r , )d € Δϕ(r ,t1) = − Δω(r ,τ)dτ Δϕ( 3 ) = − ∫ Δω τ τ Δϕ(r ,t) = − Δω(r ,τ )dτ ∫0 0 ∫0 t2 t Δϕ(r ,t2 ) = − Δω(r ,τ)dτ = − γG (r ,τ ) ⋅ r dτ ∫0 ∫0 = −Δω(r )t2 € € if Δω is non - time varying. TT. Liu,€ BE280A, UCSD Fall 2012 TT. Liu, BE280A, UCSD Fall 2012 € Time-Varying Gradient Fields Signal Equation The transverse magnetization is then given by Signal from a volume s (t) = M(r ,t)dV r ∫V t −t /T2 (r ) − jω 0t M(r ,t) M(r ,0)e−t /T2 (r )eϕ(r ,t ) = ∫ ∫ ∫ M(x,y,z,0)e e exp − jγ ∫ G (τ)⋅ r dτ dxdydz = x y z ( o ) t = M(r ,0)e−t /T2 (r )e− jω 0t exp − j Δω(r ,t)dτ ( ∫o ) For now, consider signal from a slice along z and drop € z z / 2 t 0 +Δ −t /T2 (r ) − jω 0t the T2 term.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us