Exponential Families I

Exponential Families I

Exponential Families Exponential Families MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Outline 1 Exponential Families One Parameter Exponential Family Multiparameter Exponential Family Building Exponential Families 2 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Definition q Let X be a random variable/vector with sample space X ⊂ R and probability model Pθ: The class of probability models P = fPθ; θ 2 Θg is a one-parameter exponential family if the density/pmf function p(x j θ) can be written: p(x j θ) = h(x)expfη(θ)T (x) − B(θ)g where h : X! R η :Θ ! R B :Θ ! R: Note: By the Factorization Theorem, T (X ) is sufficient for θ p(x j θ) = h(x)g(T (x); θ) Set g(T (x); θ) = expfη(θ)T (x) − B(θ)g T (X ) is the Natural Sufficient Statistic: 3 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Examples Poisson Distribution (1.6.1) : X ∼ Poisson(θ); where E[X ] = θ: θx −θ p(x j θ) = x! e ; x = 0; 1;::: 1 = x! expf(log(θ)x − θg = h(x)expfη(θ)T (x) − B(θ) where: 1 h(x) = x! η(θ) = log(θ) T (x) = x 4 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Examples Binomial Distribution (1.6.2) : X ∼ Binomial(θ; n) n r p(x j θ) = θ1(1 − θ)n−x x = 0; 1;:::; n x r n θ = expflog()x + nlog(1 − θ)g x 1−θ = h(x)expfη(θ)T (x) − B(θ) where: r n h(x) = x θ η(θ) = log( 1−θ ) T (x) = x B(θ) = −nlog(1 − θ) 5 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Examples 2 Normal Distribution : X ∼ N(µ, σ0): (Known variance) 1 2 − (x−µ) 1 2σ2 p 0 p(x j θ) = 2 e 2πσ0 1 x2 µ µ2 = [p exp{− g] × expf x − g 2 2σ2 σ2 2σ2 2πσ0 0 0 0 = h(x)expfη(θ)T (x) − B(θ) where: 1 x2 h(x) = [−p exp{− g] 2 2σ2 2πσ0 0 µ η(θ) = 2 σ0 T (x) = x µ2 B(θ) = 2 2σ0 6 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Examples 2 Normal Distribution : X ∼ N(µ0; σ ): (Known mean) 1 2 1 − (x−µ0) p(x j θ) = p e 2σ2 2πσ2 1 1 2 1 2 = [p ] × exp{− 2 (x − µ0) ) − log(σ )g 2πσ2 2σ 2 = h(x)expfη(θ)T (x) − B(θ) where: h(x) = [p1 ] 2π 1 η(θ) = − 2σ2 2 T (x) = (x − µ0) 1 2 B(θ) = 2 log(σ ) 7 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Samples from One-Parameter Exponential Family Distribution Consider a sample: X1;:::; Xn; where Xi are iid P where P 2 P= fPθ; θ 2 Θg is a one-parameter exponential family distribution with density function p(x j θ) = h(x)expfη(θ)T (x) − B(θ)g The sample X = (X1;:::; Xn) is a random vector with density/pmf: Qn p(x j θ) = i=1 (h(xi )exp[η(θ)T (xi ) − B(θ)]) Qn Pn = [ i=1 h(xi )] × exp[η(θ) i=1 T (xi ) − nB(θ)] ∗ ∗ ∗ ∗ = h (x)expfη (θ)T (x) − B (θ)g where: ∗ Q n h (x) = i=1 h(xi ) ∗ η (θ) = η(θ) ∗ Pn T (x) = i=1 T (xi ) ∗ B (θ) = nB(θ) ∗ Note: The Sufficient Statsitic T is one-dimensional for all n. 8 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Samples from One-Parameter Exponential Family Distribution Theorem 1.6.1 Let fPθg be a one-parameter exponential family of discrete distributions with pmf function: p(x j θ) = h(x)expfη(θ)T (x) − B(θ)g Then the family of distributions of the statistic T (X ) is a one-parameter exponential family of discrete distributions whose frequency functions are ∗∗ Pθ(T (x) = t) = p(t j θ) = h (t)expfη(θ)t − B(θ)g where ∗∗ X h (t) = h(x) fx:T (x)=tg Proof: Immediate 9 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Canonical Exponential Family Re-parametrize setting η = η(θ) { the Natural Parameter The density has the form p(x; η) = h(x)expfηT (x) − A(η)g The function A(η) replaces B(θ) and is defined as the normalization constant: log(A(η)) = RR ··· R h(x)expfηT (x)]dx if X continuous or X log(A(η)) = h(x)expfηT (x)] x2X if X discrete The Natural Parameter Space fη : η = η(θ); θ 2 Θg = E (Later, Theorem 1.6.3 gives properties of E) T (x) is the Natural Sufficient Statistic. 10 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Canonical Representation of Poisson Family Poisson Distribution (1.6.1) : X ∼ Poisson(θ); where E[X ] = θ: θx −θ p(x j θ) = x! e ; x = 0; 1;::: 1 = x! expf(log(θ)x − θg = h(x)expfη(θ)T (x) − B(θ)g where: 1 h(x) = x! η(θ) = log(θ) T (x) = x Canonical Representation η = log(θ): η A(η) = B(θ) = θ = e . 11 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families MGFs of Canonical Exponenetial Family Models Theorem 1.6.2 Suppose X is distributued according to a canonical exponential family, i.e., the density/pmf function is given by q p(x j η) = h(x)exp[ηT (x) − A(η)]; for x 2 X ⊂ R : If η is an interior point of E, the natural parameter space, then The moment generating function of T (X ) exists and is given by sT (X ) MT (s) = E [e j η] = expfA(s + η) − A(η)g for s in some neighborhood of 0: 0 E [T (X ) j η] = A (η): 00 Var[T (X ) j η] = A (η): Proof: sT (X ) RR (s+η)T (x)−A(η) MT (s) = E [e ) j η] = ··· h(x)e dx [A(s+η)−A(s)] RR (s+η)T (x)−A(s+η) = [e ] × ··· h(x)e dx = [e[A(s+η)−A(s)]] × 1 Remainder follows from properties of MFGs. 12 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Moments of Canonical Exponential Family Distributions η Poisson Distribution: A(η) = B(θ) = θ = e . 0 η E (X j θ) = A (η) = e = θ: 00 η Var(X j θ) = A (η) = e = θ: Binomial Distribution: r n X n−x p(x j θ) = θ (1 − θ) x θ = h(x)expflog()(1−θ) x + nlog(1 − θ)g η = h(x)expfηx − nlog(e + 1)g η θ So A(η) = nlog(e + 1; ) with η = log()1−θ 0 eη A (η) = n eη +1 = nθ 00 1 η η −1 η A (η) = neη +1 e + ne × (eη +1)2 e eη eη = n[]eη +1 × (1 − (eη +1) ) = nθ(1 − θ) 13 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Moments of the Gamma Distribution X1;:::; Xn i.i.d Gamma(p; λ) distribution with density λp xp−1 e−λx p(x j λ, p) = Γ(p) , 0 < x < 1 where R 1 p p−1 −λx Γ(p) = 0 λ x e dx xp−1 p(x j λ, p) = [ Γ(p) ]exp{−λx + plog(λ)g = h(x)expfηT (x) − A(η)g where η = −λ A(η) = −plog(λ) = −plog(−η) Thus 0 E (X ) = A (η) = −p/η = p/λ 00 2 2 Var(X ) = A (η) = (p/η ) = p/λ 14 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Notes on Gamma Distribution Gamma(p = n=2; λ = 1=2) corresponds to the Chi-Squared distribution with n degrees of freedom. p = 2 corresponds to the Exponential Distribution p For p = 1; Γ(1=2) = π Γ(p + 1) = pΓ(p) for positive integer p. 15 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Rayleigh Distribution Sample X1 :::; Xn iid with density function x 2 2 p(x j θ) = θ2 exp(−x =2θ ) 1 2 2 = [x] × exp{− 2θ2 x − log(θ )g = h(x)expfηT (x) − A(η)g where 1 η = − 2θ2 2 T (X ) = X : 2 −1 A(η) = log(θ ) = log( 2η ) = −log(−2η) By the mgf 2 0 2 1 2 E (X ) = A (η) = − 2η= − η = 2θ 2 00 1 4 Var(X ) = A (η) = + η2 = 4θ For the n− sample: X = (X1;:::; Xn) Pn 2 T (X) = 1 X i 2 E [T (X)] = −n/η = 2nθ 1 4 Var[T (X)] = n η2 = 4nθ : x2 Note: P(X ≤ x) = 1 − exp{− 2θ2 g (Failure time model) 16 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Outline 1 Exponential Families One Parameter Exponential Family Multiparameter Exponential Family Building Exponential Families 17 MIT 18.655 Exponential Families One Parameter Exponential Family Exponential Families Multiparameter Exponential Family Building Exponential Families Definition k fPθ; θ 2 Θg,Θ ⊂ R , is a k-parameter exponential family if the the density/pmf function of X ∼ Pθ is k X p(x j θ) = h(x)exp[ ηj (θ)Tj (x) − B(θ)], j=1 q where x 2 X ⊂ R ; and η1; : : : ; ηk and B are real-valued functions mappying Θ ! R.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us