
Modeling and Simulation at the Exascale for Energy and the Environment Co-Chairs: Horst Simon Lawrence Berkeley National Laboratory April 17–18, 2007 3 Thomas Zacharia Oak Ridge National Laboratory May 17–18, 2007 Rick Stevens Argonne National Laboratory E May 31–June 1, 2007 On the cover: Teraflops Research Chip - Intel Corporation Wind Farm - Randy Hayes, Bureau of Land Management Blue Marble - Reto Stöckli, NASA Goddard Space Flight Center Image Modeling and Simulation at the Exascale for Energy and the Environment Report on the Advanced Scientific Computing Research Town Hall Meetings on Simulation and Modeling at the Exascale for Energy, Ecological Sustainability and Global Security (E3) Co-Chairs: Lawrence Berkeley National Laboratory: Horst Simon Oak Ridge National Laboratory: Thomas Zacharia Argonne National Laboratory: Rick Stevens Office of Advanced Scientific Computing Research Contact: Michael Strayer Special Assistance Technical: Lawrence Berkeley National Laboratory: Deb Agarwal, David Bailey, John Bell, Wes Bethel, Julian Borrill, Phil Colella, William Collins, Nikos Kyrpides, Victor Markowitz, Juan Meza, Norman Miller, Peter Nugent, Leonid Oliker, Arie Shoshani, Erich Strohmaier, Brian Tierney, Lin-Wang Wang, Michael Wehner Oak Ridge National Laboratory: Eduardo D’Azevedo, David Bernholdt, John Drake, David Erickson, George Fann, James Hack, Victor Hazlewood, Al Geist, Igor Jouline, Douglas Kothe, Bronson Messer, Anthony Mezzacappa, Jeff Nichols, Stephen Poole, B. (Rad) Radhakrishnan, Nagiza Samatova, Srdjan Simunovic, Scott Studham, Jeffrey Vetter, Gilbert Weigand Argonne National Laboratory: Raymond Bair, Pete Beckman, Charles Catlett, Robert Edwards, Paul Fisher, Ed Frank, Ian Foster, William Gropp, Ahmed Hassanein, Mark Hereld, Paul Hovland, Robert Jacob, Kenneth Kemner, Veerabhadra Kotamarthi, Don Lamb, Ewing Lusk, Jorge Moré, Lois McInnes, Folker Meyer, Boyanna Norris, David Nowak, Michael Papka, Robert Ross Administrative: Lawrence Berkeley National Laboratory: Jon Bashor, Yeen Markin Oak Ridge National Laboratory: Linda Malone, Debbie McCoy Argonne National Laboratory: Kathy Dibennardi, Janet Werner, Cheryl Zidel Publication: Oak Ridge National Laboratory: Creative Media Argonne National Laboratory: Joseph Insley Editorial: Oak Ridge National Laboratory: Agatha Bardoel, Bonnie Nestor Argonne National Laboratory: Gail Pieper This report is available on the web at http://www.sc.doe.gov/ascr/ProgramDocuments/ProgDocs.html Modeling and Simulation at the Exascale for Energy and the Environment Contents Executive Summaryvii Introduction �������������������������������������������������������������������������������������������������������������������� 1 Section 1: Climate ��������������������������������������������������������������������������������������������������������� 5 Section 2: Energy 2A: Combustion ������������������������������������������������������������������������������������������������������� 19 2B: Nuclear Fusion �������������������������������������������������������������������������������������������������� 27 2C: Solar 33 2D: Nuclear Fission ������������������������������������������������������������������������������������������������� 37 Section 3: Biology �������������������������������������������������������������������������������������������������������� 49 Section 4: Socioeconomic Modeling 57 Section 5: Astrophysics ����������������������������������������������������������������������������������������������� 73 Section 6: Math and Algorithms ����������������������������������������������������������������������������������� 85 Section 7: Software ��������������������������������������������������������������������������������������������������� 101 Section 8: Hardware �������������������������������������������������������������������������������������������������� 109 Section 9: Cyberinfrastructure ����������������������������������������������������������������������������������� 117 Appendix A: Initiative Summary ��������������������������������������������������������������������������������� 129 Appendix B: Agendas ������������������������������������������������������������������������������������������������ 135 Appendix C: Attendees ���������������������������������������������������������������������������������������������� 141 Appendix D: Abbreviations and Terminology ������������������������������������������������������������� 153 Appendix E: References �������������������������������������������������������������������������������������������� 157 Executive Summary Exascale Town Hall Meetings Letter Report Lawrence Berkeley, Oak Ridge, and Argonne national laboratories convened three town hall meetings aimed at collecting community input on the prospects of a proposed new Department of Energy (DOE) initiative entitled Simulation and Modeling at the Exascale for Energy and the Environment, or E3 for short. The goal of the town hall meetings was to engage the computational science community in a series of broad and open discussions about the potential benefits of advanced computing at the exascale (1018 operations per second) on “global” challenge problems in the areas of energy, the environment, and basic science. Approximately 450 researchers from universities, national laboratories, and U.S. companies participated at the three meetings held in April, May, and June 2007. In addition to the scientific and engineering challenges and opportunities, the meetings also addressed needed advances in computer science and software technology, large-scale hardware, applied mathematics, and cyberinfrastructure and cyber security. Here we summarize the major conclusions of the town hall meetings. Feasibility of Exascale Systems General-purpose exascale computer systems are expected to be technologically feasible within the next 15 years. These systems will likely have between 10 million and 100 million processing elements or cores. The major U.S. vendors of large-scale systems and processors (e.g., IBM, Intel, Cray, AMD) are in general agreement that these systems will push the envelope of a number of important technologies, including processor architecture, scale of multicore integration (perhaps into the range of 1000 cores per chip or beyond), power management, and packaging. The projected exascale systems themselves will have part counts comparable to those of today’s largest systems (or slightly larger). Detailed cost studies have not been done, but the consensus is that costs will be comparable to those of the largest systems being contemplated today ($100 million to $200 million per system). Significant challenges arise in accomplishing exascale computing, in areas that include architecture, scale, power, reliability, cost, and packaging. A major source of uncertainty is how quickly the general marketplace will be able to adopt highly parallel, single-chip, multicore systems in normal information technology (IT) products. The current belief is that the broad market is not likely to be able to adopt multicore systems at the 1000-processor level without a substantial revolution in software and programming techniques for the hundreds of thousands of programmers who work in industry and do not yet have adequate parallel programming skills. Extrapolation of current hardware trends suggests that exacale systems could be available in the marketplace by approximately 2022 via a “business as usual” scenario. With the appropriate level of investments, it may be possible to accelerate the availability by up to five years, to approximately 2017. vii Executive Summary Exascale systems will also require substantial investments in input/output (I/O) and storage research. The current trends in disk drives and other storage technologies are optimized for the consumer market and may not have the optimal ratios of capacity to bandwidth needed for large-scale systems. Power efficiency is also expected to be a major problem, with the goal of an exaflops system at less than 20 MW sustained power consumption perhaps achievable. Driving the earlier availability of the systems will compromise the power efficiencies to some degree. We note that Japan has outlined in its current petascale initiative a rough roadmap to the exascale that proceeds via three systems: a 10 petaflops (PF) system in ~2012, a 100 PF system in ~2017, and a 1000 PF system in the ~2022 timeframe. It appears possible for a U.S. computing program to maintain leadership during the next decade in this area – but only if increased investments are started immediately and are sustained over the long term. Science and Engineering Opportunities The three town hall meetings examined a range of applications that would be materially transformed by the availability of exascale systems. We highlight here several significant opportunities in the areas of energy, climate, socioeconomics, biology, and astrophysics. Energy Energy research offers significant opportunities to exploit computing at the exascale, in order to advance our understanding of basic processes in areas such as combustion, which would naturally lead to a design capability for improving the efficient use of liquid fuels, whether from fossil sources or renewable sources. First-principles computational design and optimization of catalysts will become possible at the exascale, as will de novo design of biologically mediated pathways for energy conversion. Access to exascale systems and the appropriate applications codes could have a dramatic impact on nuclear fission
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages174 Page
-
File Size-