Limits at Infinity and Infinite Limits

Limits at Infinity and Infinite Limits

Limits at Infinity and Infinite Limits more examples of limits – Typeset by FoilTEX – 1 Motivation: handling infinite variable and infinite function – Typeset by FoilTEX – 2 2 Question. Can we describe f(x)=1/x in mathematics: 1 (1) infinite value of variable? O (2) infinite value of function? 2 Question. Can we describe f(x)=1/x in mathematics: 1 (1) infinite value of variable? O (2) infinite value of function? Application: horizontal and vertical asymptotes – Typeset by FoilTEX – 3 Limits at infinity infinite value of variable – Typeset by FoilTEX – 4 Definition. L = lim f(x) x→∞ ⇔ ∀ε > 0 ∃N > 0 / x > N ⇒ |f(x) − L| < ε Definition. L = lim f(x) x→∞ ⇔ ∀ε > 0 ∃N > 0 / x > N ⇒ |f(x) − L| < ε 5x + 1 Example: lim = 5 x→∞ x − 2 ⇔ ∀ε > 0 ∃N > 0 / x > N 5x + 1 ⇒ − 5 < ε x − 2 5x+1 11 11 (in particular, | x−2 − 5| = |x−2| < ε if N = 2 + ε ) – Typeset by FoilTEX – 5 Properties: Let lim f(x) and lim g(x) exist, x→∞ x→∞ lim [f(x) + g(x)] = lim f(x) + lim g(x) x→∞ x→∞ x→∞ lim [f(x) − g(x)] = lim f(x) − lim g(x) x→∞ x→∞ x→∞ lim [f(x) · g(x)] = [ lim f(x)] · [ lim g(x)] x→∞ x→∞ x→∞ lim [f(x)/g(x)] = [ lim f(x)]/[ lim g(x)], x→∞ x→∞ x→∞ lim g(x) 6= 0 x→∞ pn q lim g(x) = n lim g(x), lim g(x) > 0, n even x→∞ x→∞ x→∞ – Typeset by FoilTEX – 6 EXAMPLES – Typeset by FoilTEX – 7 EXAMPLE 1. Evaluate limit 1 lim x→∞ x EXAMPLE 1. Evaluate limit 1 lim x→∞ x As variable x gets larger, 1/x gets smaller because 1 is being divided by a laaaaaaaarge number: 1 1 x = 1010, = x 1010 EXAMPLE 1. Evaluate limit 1 lim x→∞ x As variable x gets larger, 1/x gets smaller because 1 is being divided by a laaaaaaaarge number: 1 1 x = 1010, = x 1010 The limit is 0. 1 lim = 0. x→∞ x – Typeset by FoilTEX – 8 EXAMPLE 2. Limits 1 lim = 0 x→∞ xn 1 lim √ = 0 x→∞ n x EXAMPLE 2. Limits 1 lim = 0 x→∞ xn 1 lim √ = 0 x→∞ n x By the same argument 1 1 lim = 0, lim √ = 0 x→∞ x − 100 x→∞ n x − 10000 – Typeset by FoilTEX – 9 EXAMPLE 3. Evaluate limit 1 lim √ x→∞ n x2 + x − C EXAMPLE 3. Evaluate limit 1 lim √ x→∞ n x2 + x − C Recall the graph of y = x2 + x − C Observation: y= x 2 + x - C x → ∞ ⇒ y → ∞ O Value of C does not matter. -1/4-C The answer is 0. – Typeset by FoilTEX – 10 EXAMPLE 4. Evaluate limit (not evoke graphs) 1 lim x→∞ x2 − x − 1 EXAMPLE 4. Evaluate limit (not evoke graphs) 1 lim x→∞ x2 − x − 1 Attention: indeterminacy ∞ − ∞ 1 = lim x→∞ 1 1 x2 1 − − x x2 1 1 = lim lim = 0 · 1 = 0 x→∞ x2 x→∞ 1 1 1 − − x x2 – Typeset by FoilTEX – 11 EXAMPLE 5. Evaluate limit 5x3 − 2x2 − 1 lim x→∞ x3 − x + 1 EXAMPLE 5. Evaluate limit 5x3 − 2x2 − 1 lim x→∞ x3 − x + 1 Standard trick: divide by the highest degree of x 5x3 2x2 1 2 1 3 − 3 − 3 5 − − 3 = lim x x x = lim x x x→∞ x3 x 1 x→∞ 1 1 − + 1 − + x3 x3 x3 x2 x3 5 − 0 − 0 = = 5 1 − 0 + 0 – Typeset by FoilTEX – 12 EXAMPLE 6. Evaluate limit x − 2 lim p x→∞ 2x2 − x + 1 EXAMPLE 6. Evaluate limit x − 2 lim p x→∞ 2x2 − x + 1 Standard trick: divide by the highest degree of x x 2 x 2 − − x x x x3 = lim √ = lim r x→∞ 2x2 − x + 1 x→∞ 2x2 x 1 √ − + x2 x2 x2 x2 1 − 0 1 = √ = √ . 2 − 0 + 0 2 – Typeset by FoilTEX – 13 Indeterminacy: unsuitable breaking in limits – Typeset by FoilTEX – 14 Attention: Indeterminacy [x2 + 1] ∞ [x3 − 1] 0 lim lim x→∞ [x3 − 3] ∞ x→1 [x2 − 1] 0 Wrong breaking! Limit laws do not apply! lim[1 − cos x][cot x] ( 0 · ∞ ) x→0 Substitution is undefined! p p lim [ x2 + x] − [ x2 − x] ( ∞ − ∞ ) x→∞ Rewrite first! – Typeset by FoilTEX – 15 ∞ Indeterminacy : ∞ [x2 + 1] lim x→∞ [x3 − 3] ∞ Indeterminacy : ∞ [x2 + 1] lim x→∞ [x3 − 3] division by highest exponent of x: x2 1 + 3 3 0 + 0 lim x x = = 0 x→∞ x3 3 1 − 0 − x3 x3 – Typeset by FoilTEX – 16 0 Indeterminacy : 0 [x3 − 1] lim x→1 [x2 − 1] 0 Indeterminacy : 0 [x3 − 1] lim x→1 [x2 − 1] factoring and re-grouping: (x − 1)(x2 + x + 1) (x − 1) (x2 + x + 1) lim = lim · x→1 (x − 1)(x + 1) x→1 (x − 1) (x + 1) (x − 1) (x2 + x + 1) 3 3 = [lim ] · [lim ] = 1 · = x→1 (x − 1) x→1 (x + 1) 2 2 – Typeset by FoilTEX – 17 Indeterminacy 0 · ∞: lim[1 − cos x] · [cot x] x→0 Indeterminacy 0 · ∞: lim[1 − cos x] · [cot x] x→0 factoring, re-grouping, and special limits: cos x 1 − cos x x cos x lim(1 − cos x) = lim x→0 sin x x→0 x sin x 1 Indeterminacy 0 · ∞: lim[1 − cos x] · [cot x] x→0 factoring, re-grouping, and special limits: cos x 1 − cos x x cos x lim(1 − cos x) = lim x→0 sin x x→0 x sin x 1 1 − cos x x cos x = [lim ][lim ][lim ] = 0·1·1 = 0 x→0 x x→0 sin x x→0 1 – Typeset by FoilTEX – 18 Indeterminacy ∞ − ∞: p p lim [ x2 + x] − [ x2 − x] x→∞ Indeterminacy ∞ − ∞: p p lim [ x2 + x] − [ x2 − x] x→∞ multiplying by conjugate, re-grouping: √ √ √ √ ( x2 + x − x2 − x)( x2 + x + x2 − x) = lim √ √ x→∞ 1 ( x2 + x + x2 − x) Indeterminacy ∞ − ∞: p p lim [ x2 + x] − [ x2 − x] x→∞ multiplying by conjugate, re-grouping: √ √ √ √ ( x2 + x − x2 − x)( x2 + x + x2 − x) = lim √ √ x→∞ 1 ( x2 + x + x2 − x) x2 + x − x2 + x = lim √ √ x→∞ x2 + x + x2 − x – Typeset by FoilTEX – 19 2x = lim √ √ x→∞ x2 + x + x2 − x 2x = lim √ √ x→∞ x2 + x + x2 − x ∞/∞: division by the highest exponent 2x x = lim r r x→∞ x2 x x2 x + + − x2 x2 x2 x2 2 = √ √ = 1 1 + 0 + 1 − 0 – Typeset by FoilTEX – 20 Infinite limits infinite value of function – Typeset by FoilTEX – 21 Definition. lim f(x) = ∞ x→c ⇔ ∀M > 0 ∃δ > 0 / 0 < |x − c| < δ ⇒ f(x) > M Definition. lim f(x) = ∞ x→c ⇔ ∀M > 0 ∃δ > 0 / 0 < |x − c| < δ ⇒ f(x) > M 1 Example: lim = ∞ x→2 (x − 2)2 ⇔ ∀M > 0 ∃δ > 0 / 0 < |x−2| < δ 1 ⇒ > M (x − 2)2 (in particular, 1 > M if δ = √1 ) (x−2)2 M – Typeset by FoilTEX – 22 Example 7. lim f(x) = −∞ x→c ⇔ ∀M < 0 ∃δ > 0 / 0 < |x − c| < δ ⇒ f(x) < M Example 7. lim f(x) = −∞ x→c ⇔ ∀M < 0 ∃δ > 0 / 0 < |x − c| < δ ⇒ f(x) < M Example 8. lim f(x) = ∞ x→∞ ⇔ ∀M > 0 ∃N > 0 / x > N ⇒ f(x) > M – Typeset by FoilTEX – 23 EXAMPLES – Typeset by FoilTEX – 24 EXAMPLE 9. Evaluate infinite limit 1 lim x→1− x2 − 1 EXAMPLE 9. Evaluate infinite limit 1 lim x→1− x2 − 1 Factoring and sign analysis: 1 1 = lim = = −∞ x→1− (x − 1)(x + 1) (0−) · (2) – Typeset by FoilTEX – 25 EXAMPLE 10. Evaluate infinite limit x2 + 3x − 4 lim x→2 x2 − 4x + 4 EXAMPLE 10. Evaluate infinite limit x2 + 3x − 4 lim x→2 x2 − 4x + 4 Factoring and sign analysis: (x + 4)(x − 1) (6) · (1) = lim = = −∞ x→2 (x − 2)2 (0+) – Typeset by FoilTEX – 26 EXAMPLE 11. Evaluate infinite limit 1 lim x→0 sin x EXAMPLE 11. Evaluate infinite limit 1 lim x→0 sin x Sign analysis for one-sided limits: 1 1 lim = = +∞ x→0+ sin x (0+) EXAMPLE 11. Evaluate infinite limit 1 lim x→0 sin x Sign analysis for one-sided limits: 1 1 lim = = +∞ x→0+ sin x (0+) 1 1 lim = = −∞ x→0− sin x (0−) EXAMPLE 11. Evaluate infinite limit 1 lim x→0 sin x Sign analysis for one-sided limits: 1 1 lim = = +∞ x→0+ sin x (0+) 1 1 lim = = −∞ x→0− sin x (0−) Limit at 0 does not exist – Typeset by FoilTEX – 27.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    50 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us