Centroids and Moment of Inertia Calculation.Pptx

Centroids and Moment of Inertia Calculation.Pptx

<p> 14 January 2011 </p><p>Mechanics of Materials CIVL 3322 / MECH 3322 Centroids and <a href="/tags/Moment_(physics)/" rel="tag">Moment</a> of Inertia Calculations </p><p>Centroids </p><p> n n n x A yA z A ∑ i i ∑ ii ∑ i i x i=1 i=1 i=1 = n y = n z = n A A A ∑ i ∑ i ∑ i i=1 i=1 i=1</p><p>2 Centroid and <a href="/tags/Moment_of_inertia/" rel="tag">Moment of Inertia</a> Calculations </p><p>1 14 January 2011 </p><p>Parallel Axis Theorem </p><p>¢ If you know the moment of inertia about a centroidal axis of a figure, you can calculate the moment of inertia about any parallel axis to the centroidal axis using a </p><p> simple formula </p><p>I I Ay2 z = z +</p><p>3 Centroid and Moment of Inertia Calculations </p><p>P07_045 </p><p>4 Centroid and Moment of Inertia Calculations </p><p>2 14 January 2011 </p><p>P07_045 </p><p>5 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ Lets start with an example problem and see how this develops n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>3 in</p><p>6 Centroid and Moment of Inertia Calculations </p><p>3 14 January 2011 </p><p>An Example </p><p>¢ We want to locate both the x and y centroids n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>3 in</p><p>7 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ There isn’t much of a chance of developing a function that is easy to integrate in this case n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>8 Centroid and Moment of Inertia3 Calculations in </p><p>4 14 January 2011 </p><p>An Example </p><p>¢ We can break this shape up into a series of shapes that we can find the centroid of n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>9 Centroid and Moment of Inertia3 Calculations in </p><p>An Example </p><p>¢ There are multiple ways to do this as long </p><p> as you are consistent n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>3 in 10 Centroid and Moment of Inertia Calculations </p><p>5 14 January 2011 </p><p>An Example </p><p>¢ First, we can develop a rectangle on the left side of the diagram, we will label that as area 1, A n 1 xA ∑ ii i=1 x = n 1 in A ∑ i i=1 A 1 in 1</p><p>1 in 1in</p><p>11 Centroid and Moment of Inertia3 in Calculations </p><p>An Example </p><p>¢ A second rectangle will be placed in the </p><p> bottom of the figure, we will label it A2 </p><p> n xA ∑ ii 1 in i=1 x = n A A ∑ i 1 in 1 i=1</p><p>A 2 1 in 1in</p><p>3 in 12 Centroid and Moment of Inertia Calculations </p><p>6 14 January 2011 </p><p>An Example </p><p>¢ A right triangle will complete the upper </p><p> right side of the figure, label it A3 </p><p> n xA ∑ ii 1 in i=1 x = n A A ∑ i 1 in 1 i=1 A3 A 2 1 in 1in</p><p>3 in 13 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ Finally, we will develop a negative area to remove the quarter circle in the lower left </p><p> hand corner, label it A4 n xA ∑ ii 1 in i=1 x = n A A ∑ i 1 in 1 i=1 A3 A A 4 2 1 in 1in</p><p>14 Centroid and Moment of Inertia3 Calculationsin </p><p>7 14 January 2011 </p><p>An Example </p><p>¢ We will begin to build a table so that keeping up with things will be easier ¢ The first column will be the areas n xA 1 in ∑ ii i=1 ID Area x = n 2 (in ) A A 2 1 in ∑ i 1 A i 1 1 A3 = A2 3</p><p>A3 1.5 A A 1 in A4 -0.7854 4 2 1in</p><p>3 in 15 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ Now we will calculate the <a href="/tags/Distance/" rel="tag">distance</a> to the local centroids from the y-axis (we are </p><p> calculating an x-centroid) n</p><p> xAii ID Area xi 1 in ∑ 2 i 1 (in ) (in) = x = n A1 2 0.5 Ai A2 3 2.5 1 in ∑ A1 A i=1 A3 1.5 2 3</p><p>A4 -0.7854 0.42441 A 1 in A4 2 1in</p><p>3 in 16 Centroid and Moment of Inertia Calculations </p><p>8 14 January 2011 </p><p>An Example </p><p>¢ To calculate the <a href="/tags/Top_(toy)/" rel="tag">top</a> term in the expression we need to multiply the entries in the last </p><p> two columns by one another n xA ∑ ii i 1 ID Area xi xi*Area 1 in = x = n (in2) (in) (in3) A A1 2 0.5 1 ∑ i A2 3 2.5 7.5 1 in i=1 A1 A A3 1.5 2 3 3</p><p>A4 -0.7854 0.42441 -0.33333 A 1 in A4 2 1in</p><p>17 Centroid and Moment of Inertia Calculations 3 in</p><p>An Example </p><p>¢ If we sum the second column, we have the </p><p> bottom term in the division, the total area </p><p> n</p><p>ID Area xi xi*Area xA ∑ ii 2 3 (in ) (in) (in ) x = i=1 A1 2 0.5 1 1 in n</p><p>A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 A -0.7854 0.42441 -0.33333 1 in A 4 1 A3 5.714602 A 1 in A4 2 1in</p><p>3 in 18 Centroid and Moment of Inertia Calculations </p><p>9 14 January 2011 </p><p>An Example </p><p>¢ And if we sum the fourth column, we have </p><p> the top term, the area moment </p><p>ID Area xi xi*Area n (in2) (in) (in3) xAii A1 2 0.5 1 ∑ i=1 A2 3 2.5 7.5 x = 1 in n A3 1.5 2 3 A A -0.7854 0.42441 -0.33333 ∑ i 4 i=1 5.714602 11.16667 1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>3 in 19 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ Dividing the sum of the area moments by </p><p> the total area we calculate the x-centroid </p><p> n ID Area x x*Area i i xAii (in2) (in) (in3) ∑ x = i=1 A1 2 0.5 1 1 in n A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 1 in A4 -0.7854 0.42441 -0.33333 A1 A 5.714602 11.16667 3</p><p> x bar 1.9541 A 1 in A4 2 1in</p><p>3 in 20 Centroid and Moment of Inertia Calculations </p><p>10 14 January 2011 </p><p>An Example </p><p>¢ You can always remember which to divide by if you look at the final units, remember </p><p> that a centroid is a distance n ID Area x x*Area i i xAii (in2) (in) (in3) ∑ x = i=1 A1 2 0.5 1 1 in n A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 1 in A4 -0.7854 0.42441 -0.33333 A1 A 5.714602 11.16667 3</p><p> x bar 1.9541 A 1 in A4 2 1in</p><p>3 in 21 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ We can do the same process with the y </p><p> centroid </p><p> n ID Area x x*Area i i yAii (in2) (in) (in3) ∑ y = i=1 A1 2 0.5 1 1 in n A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 1 in A4 -0.7854 0.42441 -0.33333 A1 A 5.714602 11.16667 3</p><p> x bar 1.9541 A 1 in A4 2 1in</p><p>3 in 22 Centroid and Moment of Inertia Calculations </p><p>11 14 January 2011 </p><p>An Example </p><p>¢ Notice that the bottom term doesn’t change, the area of the figure hasn’t </p><p> changed n ID Area x x*Area i i yAii (in2) (in) (in3) ∑ y = i=1 A1 2 0.5 1 1 in n A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 1 in A4 -0.7854 0.42441 -0.33333 A1 A 5.714602 11.16667 3</p><p> x bar 1.9541 A 1 in A4 2 1in</p><p>3 in 23 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ We only need to add a column of yi’s </p><p>ID Area xi xi*Area yi (in2) (in) (in3) (in) n A1 2 0.5 1 1 yA A2 3 2.5 7.5 0.5 ∑ ii i=1 A3 1.5 2 3 1.333333 y = n A4 -0.7854 0.42441 -0.33333 0.42441 A ∑ i 5.714602 11.16667 i=1</p><p> x bar 1.9541 1 in</p><p>1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>24 Centroid and Moment of Inertia Calculations 3 in</p><p>12 14 January 2011 </p><p>An Example </p><p>¢ Calculate the area moments about the x-</p><p> axis </p><p>ID Area xi xi*Area yi yi*Area n (in2) (in) (in3) (in) (in3) yAii A1 2 0.5 1 1 2 ∑ A 3 2.5 7.5 0.5 1.5 i=1 2 y = n A3 1.5 2 3 1.333333 2 Ai A4 -0.7854 0.42441 -0.33333 0.42441 -0.33333 ∑ 5.714602 11.16667 i=1</p><p> x bar 1.9541 1 in</p><p>1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>25 Centroid and Moment of Inertia Calculations 3 in</p><p>An Example </p><p>¢ Sum the area moments </p><p>ID Area xi xi*Area yi yi*Area (in2) (in) (in3) (in) (in3) n A1 2 0.5 1 1 2 yA A2 3 2.5 7.5 0.5 1.5 ∑ ii i 1 A3 1.5 2 3 1.333333 2 = y = n A4 -0.7854 0.42441 -0.33333 0.42441 -0.33333 A 5.714602 11.16667 5.166667 ∑ i i=1 x bar 1.9541 1 in</p><p>1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>26 Centroid and Moment of Inertia Calculations 3 in</p><p>13 14 January 2011 </p><p>An Example </p><p>¢ And make the division of the area </p><p> moments by the total area </p><p>ID Area xi xi*Area yi yi*Area (in2) (in) (in3) (in) (in3) n</p><p>A1 2 0.5 1 1 2 yA ∑ ii A2 3 2.5 7.5 0.5 1.5 y = i=1 A 1.5 2 3 1.333333 2 n 3 A A4 -0.7854 0.42441 -0.33333 0.42441 -0.33333 ∑ i 5.714602 11.16667 5.166667 i=1</p><p> x bar 1.9541 y bar 0.904117 1 in</p><p>1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>27 Centroid and Moment of Inertia Calculations 3 in</p><p>Parallel Axis Theorem </p><p>¢ If you know the moment of inertia about a centroidal axis of a figure, you can calculate the moment of inertia about any parallel axis to the centroidal axis using a </p><p> simple formula 2 IIAxyy=+ 2 IIAyxx=+ 28 Centroid and Moment of Inertia Calculations </p><p>14 14 January 2011 </p><p>Parallel Axis Theorem </p><p>¢ Since we usually use the bar over the centroidal axis, the moment of inertia about a centroidal axis also uses the bar </p><p> over the axis designation </p><p>2 IIAxyy=+ 2 IIAyxx=+ 29 Centroid and Moment of Inertia Calculations </p><p>Parallel Axis Theorem </p><p>¢ If you look carefully at the expression, you should notice that the moment of inertia about a centroidal axis will always be the minimum moment of inertia about any axis </p><p> that is parallel to the centroidal axis. 2 IIAxyy=+ 2 IIAyxx=+ 30 Centroid and Moment of Inertia Calculations </p><p>15 14 January 2011 </p><p>Another Example </p><p>¢ We can use the parallel axis theorem to find the moment of inertia of a composite figure </p><p>31 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p> y 6" 3"</p><p>6"</p><p> x</p><p>6"</p><p>32 Centroid and Moment of Inertia Calculations </p><p>16 14 January 2011 </p><p>Another Example </p><p>¢ We can divide up the area into smaller areas with shapes from the table </p><p> y 6" 3"</p><p>6" I II x III 6"</p><p>33 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>Since the parallel axis theorem will require the area for each section, that is a reasonable place to start </p><p> y 6" 3" ID Area (in2) I 36 6" I II 9 II III 27 x III 6"</p><p>34 Centroid and Moment of Inertia Calculations </p><p>17 14 January 2011 </p><p>Another Example We can locate the centroid of each area with respect the y axis. </p><p> y 6" 3" ID Area xbari (in2) (in) I 36 3 6" I II 9 7 II x III 27 6 III 6"</p><p>35 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>From the table in the back of the book we find that the moment of inertia of a rectangle about its y-centroid axis is 1 3 Ibh= y 6" 3" y 12</p><p>ID Area xbar 6" I i II (in2) (in) x III I 36 3 6" II 9 7 III 27 6 36 Centroid and Moment of Inertia Calculations </p><p>18 14 January 2011 </p><p>Another Example In this example, for Area I, b=6” and h=6” </p><p>1 3 Iininy = (66)( ) 12 4 y 6" 3" Iiny =108</p><p>ID Area xbar 6" I i II (in2) (in) x III I 36 3 6" II 9 7 III 27 6 37 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>For the first triangle, the moment of inertia calculation isn’t as obvious </p><p> y 6" 3"</p><p>6" I II x III 6"</p><p>38 Centroid and Moment of Inertia Calculations </p><p>19 14 January 2011 </p><p>Another Example </p><p>The way it is presented in the text, we can only find </p><p> the Ix about the centroid </p><p> y 6" 3" h x 6" I II x III b 6"</p><p>39 Centroid and Moment of Inertia Calculations </p><p>Another Example The change may not seem obvious but it is just in how we orient our axis. Remember an axis is our decision. </p><p> h x y 6" 3"</p><p> b</p><p> x 6" I II x b III 6"</p><p> h</p><p>40 Centroid and Moment of Inertia Calculations </p><p>20 14 January 2011 </p><p>Another Example So the moment of inertia of the II triangle can be calculated using the formula with the correct orientation. </p><p>1 3 Ibh= y 6" 3" y 36</p><p>1 3 6" I Iy = (63 in)( in) 36 II x 4 III Iy = 4.5 in 6"</p><p>41 Centroid and Moment of Inertia Calculations </p><p>Another Example The same is true for the III triangle </p><p>1 3 Ibh= y 6" 3" y 36</p><p>1 3 6" I Iy = (69 in)( in) 36 II x 4 III Iy =121.5 in 6"</p><p>42 Centroid and Moment of Inertia Calculations </p><p>21 14 January 2011 </p><p>Another Example </p><p>Now we can enter the Iybar for each sub-area into the table </p><p>Sub- y 6" 3" Area Area xbari Iybar (in2) (in) (in4) 6" I I 36 3 108 II x II 9 7 4.5 III III 27 6 121.5 6"</p><p>43 Centroid and Moment of Inertia Calculations </p><p>Another Example 2 We can then sum the Iy and the A(dx) to get the moment of inertia for each sub-area y 6" 3"</p><p>6" I II x III 6" Sub- Iybar + 2 2 Area Area xbari Iybar A(dx) A(dx) (in2) (in) (in4) (in4) (in4) I 36 3 108 324 432 II 9 7 4.5 441 445.5 III 27 6 121.5 972 1093.5 </p><p>44 Centroid and Moment of Inertia Calculations </p><p>22 14 January 2011 2 2 Sub-Area Area xbari Iybar A(dx) Iybar + A(dx) (in2) (in) (in4) (in4) (in4) I 36 3 108 324 432 II 9 7 4.5 441 445.5 III 27 6 121.5 972 1093.5 1971 Another Example And if we sum that last column, we have the </p><p>Iy for the composite figure y 6" 3"</p><p>6" I II x III 6" Sub- Iybar + 2 2 Area Area xbari Iybar A(dx) A(dx) (in2) (in) (in4) (in4) (in4) I 36 3 108 324 432 II 9 7 4.5 441 445.5 III 27 6 121.5 972 1093.5 </p><p>1971 </p><p>45 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>We perform the same type analysis for the Ix y 6" 3"</p><p>6" I II x ID Area III (in2) 6" I 36 II 9 III 27 </p><p>46 Centroid and Moment of Inertia Calculations </p><p>23 14 January 2011 </p><p>Another Example </p><p>Locating the y-centroids from the x-axis </p><p> y 6" 3"</p><p>6" I Sub-Area Area ybari II x 2 III (in ) (in) 6" I 36 3 II 9 2 III 27 -2 </p><p>47 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>Determining the Ix for each sub-area </p><p> y 6" 3"</p><p>6" I II x Sub-Area Area ybari Ixbar III 6" (in2) (in) (in4) I 36 3 108 II 9 2 18 III 27 -2 54 </p><p>48 Centroid and Moment of Inertia Calculations </p><p>24 14 January 2011 </p><p>Another Example 2 Making the A(dy) multiplications </p><p> y 6" 3"</p><p>6" I II Sub- x 2 III Area Area ybari Ixbar A(dy) 6" (in2) (in) (in4) (in4) I 36 3 108 324 </p><p>II 9 2 18 36 III 27 -2 54 108 </p><p>49 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>Summing and calculating Ix </p><p> y 6" 3" Sub- I + xbar 6" I 2 2 Area Area ybari Ixbar A(dy) A(dy) II x 2 4 4 4 III (in ) (in) (in ) (in ) (in ) 6" I 36 3 108 324 432 II 9 2 18 36 54 III 27 -2 54 108 162 </p><p>648 </p><p>50 Centroid and Moment of Inertia Calculations </p><p>25 14 January 2011 </p><p>Homework Problem 1 </p><p>Calculate the centroid of the composite shape in reference to the bottom of the shape and calculate the moment of inertia about the centroid z-axis. </p><p>51 Centroid and Moment of Inertia Calculations </p><p>Homework Problem 2 </p><p>Calculate the centroid of the composite shape in reference to the bottom of the shape and calculate the moment of inertia about the centroid z-axis. </p><p>52 Centroid and Moment of Inertia Calculations </p><p>26 14 January 2011 </p><p>Homework Problem 3 </p><p>Calculate the centroid of the composite shape in reference to the bottom of the shape and calculate the moment of inertia about the centroid z-axis. </p><p>53 Centroid and Moment of Inertia Calculations </p><p>27 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    0 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us