
<p> 14 January 2011 </p><p>Mechanics of Materials CIVL 3322 / MECH 3322 Centroids and <a href="/tags/Moment_(physics)/" rel="tag">Moment</a> of Inertia Calculations </p><p>Centroids </p><p> n n n x A yA z A ∑ i i ∑ ii ∑ i i x i=1 i=1 i=1 = n y = n z = n A A A ∑ i ∑ i ∑ i i=1 i=1 i=1</p><p>2 Centroid and <a href="/tags/Moment_of_inertia/" rel="tag">Moment of Inertia</a> Calculations </p><p>1 14 January 2011 </p><p>Parallel Axis Theorem </p><p>¢ If you know the moment of inertia about a centroidal axis of a figure, you can calculate the moment of inertia about any parallel axis to the centroidal axis using a </p><p> simple formula </p><p>I I Ay2 z = z +</p><p>3 Centroid and Moment of Inertia Calculations </p><p>P07_045 </p><p>4 Centroid and Moment of Inertia Calculations </p><p>2 14 January 2011 </p><p>P07_045 </p><p>5 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ Lets start with an example problem and see how this develops n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>3 in</p><p>6 Centroid and Moment of Inertia Calculations </p><p>3 14 January 2011 </p><p>An Example </p><p>¢ We want to locate both the x and y centroids n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>3 in</p><p>7 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ There isn’t much of a chance of developing a function that is easy to integrate in this case n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>8 Centroid and Moment of Inertia3 Calculations in </p><p>4 14 January 2011 </p><p>An Example </p><p>¢ We can break this shape up into a series of shapes that we can find the centroid of n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>9 Centroid and Moment of Inertia3 Calculations in </p><p>An Example </p><p>¢ There are multiple ways to do this as long </p><p> as you are consistent n xA ∑ ii i=1 x = n 1 in A ∑ i i=1</p><p>1 in</p><p>1 in 1in</p><p>3 in 10 Centroid and Moment of Inertia Calculations </p><p>5 14 January 2011 </p><p>An Example </p><p>¢ First, we can develop a rectangle on the left side of the diagram, we will label that as area 1, A n 1 xA ∑ ii i=1 x = n 1 in A ∑ i i=1 A 1 in 1</p><p>1 in 1in</p><p>11 Centroid and Moment of Inertia3 in Calculations </p><p>An Example </p><p>¢ A second rectangle will be placed in the </p><p> bottom of the figure, we will label it A2 </p><p> n xA ∑ ii 1 in i=1 x = n A A ∑ i 1 in 1 i=1</p><p>A 2 1 in 1in</p><p>3 in 12 Centroid and Moment of Inertia Calculations </p><p>6 14 January 2011 </p><p>An Example </p><p>¢ A right triangle will complete the upper </p><p> right side of the figure, label it A3 </p><p> n xA ∑ ii 1 in i=1 x = n A A ∑ i 1 in 1 i=1 A3 A 2 1 in 1in</p><p>3 in 13 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ Finally, we will develop a negative area to remove the quarter circle in the lower left </p><p> hand corner, label it A4 n xA ∑ ii 1 in i=1 x = n A A ∑ i 1 in 1 i=1 A3 A A 4 2 1 in 1in</p><p>14 Centroid and Moment of Inertia3 Calculationsin </p><p>7 14 January 2011 </p><p>An Example </p><p>¢ We will begin to build a table so that keeping up with things will be easier ¢ The first column will be the areas n xA 1 in ∑ ii i=1 ID Area x = n 2 (in ) A A 2 1 in ∑ i 1 A i 1 1 A3 = A2 3</p><p>A3 1.5 A A 1 in A4 -0.7854 4 2 1in</p><p>3 in 15 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ Now we will calculate the <a href="/tags/Distance/" rel="tag">distance</a> to the local centroids from the y-axis (we are </p><p> calculating an x-centroid) n</p><p> xAii ID Area xi 1 in ∑ 2 i 1 (in ) (in) = x = n A1 2 0.5 Ai A2 3 2.5 1 in ∑ A1 A i=1 A3 1.5 2 3</p><p>A4 -0.7854 0.42441 A 1 in A4 2 1in</p><p>3 in 16 Centroid and Moment of Inertia Calculations </p><p>8 14 January 2011 </p><p>An Example </p><p>¢ To calculate the <a href="/tags/Top_(toy)/" rel="tag">top</a> term in the expression we need to multiply the entries in the last </p><p> two columns by one another n xA ∑ ii i 1 ID Area xi xi*Area 1 in = x = n (in2) (in) (in3) A A1 2 0.5 1 ∑ i A2 3 2.5 7.5 1 in i=1 A1 A A3 1.5 2 3 3</p><p>A4 -0.7854 0.42441 -0.33333 A 1 in A4 2 1in</p><p>17 Centroid and Moment of Inertia Calculations 3 in</p><p>An Example </p><p>¢ If we sum the second column, we have the </p><p> bottom term in the division, the total area </p><p> n</p><p>ID Area xi xi*Area xA ∑ ii 2 3 (in ) (in) (in ) x = i=1 A1 2 0.5 1 1 in n</p><p>A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 A -0.7854 0.42441 -0.33333 1 in A 4 1 A3 5.714602 A 1 in A4 2 1in</p><p>3 in 18 Centroid and Moment of Inertia Calculations </p><p>9 14 January 2011 </p><p>An Example </p><p>¢ And if we sum the fourth column, we have </p><p> the top term, the area moment </p><p>ID Area xi xi*Area n (in2) (in) (in3) xAii A1 2 0.5 1 ∑ i=1 A2 3 2.5 7.5 x = 1 in n A3 1.5 2 3 A A -0.7854 0.42441 -0.33333 ∑ i 4 i=1 5.714602 11.16667 1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>3 in 19 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ Dividing the sum of the area moments by </p><p> the total area we calculate the x-centroid </p><p> n ID Area x x*Area i i xAii (in2) (in) (in3) ∑ x = i=1 A1 2 0.5 1 1 in n A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 1 in A4 -0.7854 0.42441 -0.33333 A1 A 5.714602 11.16667 3</p><p> x bar 1.9541 A 1 in A4 2 1in</p><p>3 in 20 Centroid and Moment of Inertia Calculations </p><p>10 14 January 2011 </p><p>An Example </p><p>¢ You can always remember which to divide by if you look at the final units, remember </p><p> that a centroid is a distance n ID Area x x*Area i i xAii (in2) (in) (in3) ∑ x = i=1 A1 2 0.5 1 1 in n A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 1 in A4 -0.7854 0.42441 -0.33333 A1 A 5.714602 11.16667 3</p><p> x bar 1.9541 A 1 in A4 2 1in</p><p>3 in 21 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ We can do the same process with the y </p><p> centroid </p><p> n ID Area x x*Area i i yAii (in2) (in) (in3) ∑ y = i=1 A1 2 0.5 1 1 in n A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 1 in A4 -0.7854 0.42441 -0.33333 A1 A 5.714602 11.16667 3</p><p> x bar 1.9541 A 1 in A4 2 1in</p><p>3 in 22 Centroid and Moment of Inertia Calculations </p><p>11 14 January 2011 </p><p>An Example </p><p>¢ Notice that the bottom term doesn’t change, the area of the figure hasn’t </p><p> changed n ID Area x x*Area i i yAii (in2) (in) (in3) ∑ y = i=1 A1 2 0.5 1 1 in n A2 3 2.5 7.5 A ∑ i A3 1.5 2 3 i=1 1 in A4 -0.7854 0.42441 -0.33333 A1 A 5.714602 11.16667 3</p><p> x bar 1.9541 A 1 in A4 2 1in</p><p>3 in 23 Centroid and Moment of Inertia Calculations </p><p>An Example </p><p>¢ We only need to add a column of yi’s </p><p>ID Area xi xi*Area yi (in2) (in) (in3) (in) n A1 2 0.5 1 1 yA A2 3 2.5 7.5 0.5 ∑ ii i=1 A3 1.5 2 3 1.333333 y = n A4 -0.7854 0.42441 -0.33333 0.42441 A ∑ i 5.714602 11.16667 i=1</p><p> x bar 1.9541 1 in</p><p>1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>24 Centroid and Moment of Inertia Calculations 3 in</p><p>12 14 January 2011 </p><p>An Example </p><p>¢ Calculate the area moments about the x-</p><p> axis </p><p>ID Area xi xi*Area yi yi*Area n (in2) (in) (in3) (in) (in3) yAii A1 2 0.5 1 1 2 ∑ A 3 2.5 7.5 0.5 1.5 i=1 2 y = n A3 1.5 2 3 1.333333 2 Ai A4 -0.7854 0.42441 -0.33333 0.42441 -0.33333 ∑ 5.714602 11.16667 i=1</p><p> x bar 1.9541 1 in</p><p>1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>25 Centroid and Moment of Inertia Calculations 3 in</p><p>An Example </p><p>¢ Sum the area moments </p><p>ID Area xi xi*Area yi yi*Area (in2) (in) (in3) (in) (in3) n A1 2 0.5 1 1 2 yA A2 3 2.5 7.5 0.5 1.5 ∑ ii i 1 A3 1.5 2 3 1.333333 2 = y = n A4 -0.7854 0.42441 -0.33333 0.42441 -0.33333 A 5.714602 11.16667 5.166667 ∑ i i=1 x bar 1.9541 1 in</p><p>1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>26 Centroid and Moment of Inertia Calculations 3 in</p><p>13 14 January 2011 </p><p>An Example </p><p>¢ And make the division of the area </p><p> moments by the total area </p><p>ID Area xi xi*Area yi yi*Area (in2) (in) (in3) (in) (in3) n</p><p>A1 2 0.5 1 1 2 yA ∑ ii A2 3 2.5 7.5 0.5 1.5 y = i=1 A 1.5 2 3 1.333333 2 n 3 A A4 -0.7854 0.42441 -0.33333 0.42441 -0.33333 ∑ i 5.714602 11.16667 5.166667 i=1</p><p> x bar 1.9541 y bar 0.904117 1 in</p><p>1 in A 1 A3</p><p>A 1 in A4 2 1in</p><p>27 Centroid and Moment of Inertia Calculations 3 in</p><p>Parallel Axis Theorem </p><p>¢ If you know the moment of inertia about a centroidal axis of a figure, you can calculate the moment of inertia about any parallel axis to the centroidal axis using a </p><p> simple formula 2 IIAxyy=+ 2 IIAyxx=+ 28 Centroid and Moment of Inertia Calculations </p><p>14 14 January 2011 </p><p>Parallel Axis Theorem </p><p>¢ Since we usually use the bar over the centroidal axis, the moment of inertia about a centroidal axis also uses the bar </p><p> over the axis designation </p><p>2 IIAxyy=+ 2 IIAyxx=+ 29 Centroid and Moment of Inertia Calculations </p><p>Parallel Axis Theorem </p><p>¢ If you look carefully at the expression, you should notice that the moment of inertia about a centroidal axis will always be the minimum moment of inertia about any axis </p><p> that is parallel to the centroidal axis. 2 IIAxyy=+ 2 IIAyxx=+ 30 Centroid and Moment of Inertia Calculations </p><p>15 14 January 2011 </p><p>Another Example </p><p>¢ We can use the parallel axis theorem to find the moment of inertia of a composite figure </p><p>31 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p> y 6" 3"</p><p>6"</p><p> x</p><p>6"</p><p>32 Centroid and Moment of Inertia Calculations </p><p>16 14 January 2011 </p><p>Another Example </p><p>¢ We can divide up the area into smaller areas with shapes from the table </p><p> y 6" 3"</p><p>6" I II x III 6"</p><p>33 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>Since the parallel axis theorem will require the area for each section, that is a reasonable place to start </p><p> y 6" 3" ID Area (in2) I 36 6" I II 9 II III 27 x III 6"</p><p>34 Centroid and Moment of Inertia Calculations </p><p>17 14 January 2011 </p><p>Another Example We can locate the centroid of each area with respect the y axis. </p><p> y 6" 3" ID Area xbari (in2) (in) I 36 3 6" I II 9 7 II x III 27 6 III 6"</p><p>35 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>From the table in the back of the book we find that the moment of inertia of a rectangle about its y-centroid axis is 1 3 Ibh= y 6" 3" y 12</p><p>ID Area xbar 6" I i II (in2) (in) x III I 36 3 6" II 9 7 III 27 6 36 Centroid and Moment of Inertia Calculations </p><p>18 14 January 2011 </p><p>Another Example In this example, for Area I, b=6” and h=6” </p><p>1 3 Iininy = (66)( ) 12 4 y 6" 3" Iiny =108</p><p>ID Area xbar 6" I i II (in2) (in) x III I 36 3 6" II 9 7 III 27 6 37 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>For the first triangle, the moment of inertia calculation isn’t as obvious </p><p> y 6" 3"</p><p>6" I II x III 6"</p><p>38 Centroid and Moment of Inertia Calculations </p><p>19 14 January 2011 </p><p>Another Example </p><p>The way it is presented in the text, we can only find </p><p> the Ix about the centroid </p><p> y 6" 3" h x 6" I II x III b 6"</p><p>39 Centroid and Moment of Inertia Calculations </p><p>Another Example The change may not seem obvious but it is just in how we orient our axis. Remember an axis is our decision. </p><p> h x y 6" 3"</p><p> b</p><p> x 6" I II x b III 6"</p><p> h</p><p>40 Centroid and Moment of Inertia Calculations </p><p>20 14 January 2011 </p><p>Another Example So the moment of inertia of the II triangle can be calculated using the formula with the correct orientation. </p><p>1 3 Ibh= y 6" 3" y 36</p><p>1 3 6" I Iy = (63 in)( in) 36 II x 4 III Iy = 4.5 in 6"</p><p>41 Centroid and Moment of Inertia Calculations </p><p>Another Example The same is true for the III triangle </p><p>1 3 Ibh= y 6" 3" y 36</p><p>1 3 6" I Iy = (69 in)( in) 36 II x 4 III Iy =121.5 in 6"</p><p>42 Centroid and Moment of Inertia Calculations </p><p>21 14 January 2011 </p><p>Another Example </p><p>Now we can enter the Iybar for each sub-area into the table </p><p>Sub- y 6" 3" Area Area xbari Iybar (in2) (in) (in4) 6" I I 36 3 108 II x II 9 7 4.5 III III 27 6 121.5 6"</p><p>43 Centroid and Moment of Inertia Calculations </p><p>Another Example 2 We can then sum the Iy and the A(dx) to get the moment of inertia for each sub-area y 6" 3"</p><p>6" I II x III 6" Sub- Iybar + 2 2 Area Area xbari Iybar A(dx) A(dx) (in2) (in) (in4) (in4) (in4) I 36 3 108 324 432 II 9 7 4.5 441 445.5 III 27 6 121.5 972 1093.5 </p><p>44 Centroid and Moment of Inertia Calculations </p><p>22 14 January 2011 2 2 Sub-Area Area xbari Iybar A(dx) Iybar + A(dx) (in2) (in) (in4) (in4) (in4) I 36 3 108 324 432 II 9 7 4.5 441 445.5 III 27 6 121.5 972 1093.5 1971 Another Example And if we sum that last column, we have the </p><p>Iy for the composite figure y 6" 3"</p><p>6" I II x III 6" Sub- Iybar + 2 2 Area Area xbari Iybar A(dx) A(dx) (in2) (in) (in4) (in4) (in4) I 36 3 108 324 432 II 9 7 4.5 441 445.5 III 27 6 121.5 972 1093.5 </p><p>1971 </p><p>45 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>We perform the same type analysis for the Ix y 6" 3"</p><p>6" I II x ID Area III (in2) 6" I 36 II 9 III 27 </p><p>46 Centroid and Moment of Inertia Calculations </p><p>23 14 January 2011 </p><p>Another Example </p><p>Locating the y-centroids from the x-axis </p><p> y 6" 3"</p><p>6" I Sub-Area Area ybari II x 2 III (in ) (in) 6" I 36 3 II 9 2 III 27 -2 </p><p>47 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>Determining the Ix for each sub-area </p><p> y 6" 3"</p><p>6" I II x Sub-Area Area ybari Ixbar III 6" (in2) (in) (in4) I 36 3 108 II 9 2 18 III 27 -2 54 </p><p>48 Centroid and Moment of Inertia Calculations </p><p>24 14 January 2011 </p><p>Another Example 2 Making the A(dy) multiplications </p><p> y 6" 3"</p><p>6" I II Sub- x 2 III Area Area ybari Ixbar A(dy) 6" (in2) (in) (in4) (in4) I 36 3 108 324 </p><p>II 9 2 18 36 III 27 -2 54 108 </p><p>49 Centroid and Moment of Inertia Calculations </p><p>Another Example </p><p>Summing and calculating Ix </p><p> y 6" 3" Sub- I + xbar 6" I 2 2 Area Area ybari Ixbar A(dy) A(dy) II x 2 4 4 4 III (in ) (in) (in ) (in ) (in ) 6" I 36 3 108 324 432 II 9 2 18 36 54 III 27 -2 54 108 162 </p><p>648 </p><p>50 Centroid and Moment of Inertia Calculations </p><p>25 14 January 2011 </p><p>Homework Problem 1 </p><p>Calculate the centroid of the composite shape in reference to the bottom of the shape and calculate the moment of inertia about the centroid z-axis. </p><p>51 Centroid and Moment of Inertia Calculations </p><p>Homework Problem 2 </p><p>Calculate the centroid of the composite shape in reference to the bottom of the shape and calculate the moment of inertia about the centroid z-axis. </p><p>52 Centroid and Moment of Inertia Calculations </p><p>26 14 January 2011 </p><p>Homework Problem 3 </p><p>Calculate the centroid of the composite shape in reference to the bottom of the shape and calculate the moment of inertia about the centroid z-axis. </p><p>53 Centroid and Moment of Inertia Calculations </p><p>27 </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages0 Page
-
File Size-