CE 160 Notes: Virtual Work Frame Example

CE 160 Notes: Virtual Work Frame Example

Vukazich Fall 2016 CE 160 Notes: Virtual Work Frame Example 1 k C 8 ft B D E 10 ft 8 k A 5 ft 6 ft The statically determinate frame from our internal force diagram example is made up of columns that are W8x48 (I = 184 in4) members and a beam that is a W10x22 (I = 118 in4). The modulus of elasticity of structural steel is 29,000 ksi, which yields the following bending stiffnesses: 2 • EIABC = 5,336,000 k-in 2 • EIBDE = 3,422,000 k-in Find the horizontal displacement of point C using the method of virtual work. Real Problem We found the Shear, Moment, and Axial force diagrams for this frame in a previous example earlier in the semester. 1 CE 160 Virtual Work Frame Example Vukazich Fall 2016 Moment Diagram of Real or P-System (MP diagram) (You should review your notes and verify this is the correct diagram) C 18 k-ft 8 k-ft 10 k-ft D E B 12 k-ft 6 ft A 8 ft Virtual Problem Virtual System to measure δC 1 C 8 ft B D E 10 ft A 5 ft 6 ft 2 CE 160 Virtual Work Frame Example Vukazich Fall 2016 Free Body Diagram of Virtual System (or Q-system) 1 C 8 ft Ey B D 10 ft Ax Ay 5 ft 6 ft Equilibrium �! = 0; �! = 0; �! = 0 yields the following support reactions: 1 C 8 ft B D E 1.6364 10 ft A 1 1.6364 5 ft 6 ft 3 CE 160 Virtual Work Frame Example Vukazich Fall 2016 Virtual Moment Diagram (MQ diagram) (You should be able to verify this is the correct diagram) C 18 ft 8 ft 13.091 ft 10 ft E B D 8 ft A 4 CE 160 Virtual Work Frame Example Vukazich Fall 2016 Use Table 4 in the text to evaluate the virtual work product integrals that come from the principle of virtual work: 1 ! 1 ∙ �! = �!�! �� �� ! Integrate over three segments: AB, BC, and BDE MQ Diagram MP Diagram C C 18 k-ft 18 ft 8 ft 13.091 ft 8 k-ft E 10 ft E 10 k-ft D B D B 12 k-ft 6 ft 8 ft A 8 ft A Segment AB From Virtual Work Integral Table (see page 8): 1 1 � � � = 10 ft 10 k-ft 10 ft 3 ! ! 3 = 333.333 k-ft3 = 576,000 k-in3 Segment BC From Virtual Work Integral Table (see page 8): 1 1 � � � = 8 ft 8 k-ft 8 ft 3 ! ! 3 =170.6667 k-ft3 = 294,912 k-in3 5 CE 160 Virtual Work Frame Example Vukazich Fall 2016 Segment BDE -- Split into two segments at inflection point of MP diagram (point Z) 18 �� 12 �� = � 5 − � x = 3 ft MQ Diagram MP Diagram 13.091 ft 18 k-ft 18 ft E D E B Z B Z 12 k-ft 6 ft 8 ft 3 ft 3 ft 8 ft Segment BZ 18 ft 18 k-ft 13.091 ft B Z B Z 3 ft 3 ft From Virtual Work Integral Table (see page 8): 1 1 � + 2� � � = 13.091 ft +2 18 ft 18 k-ft 3 ft 6 ! ! ! 6 = 441.818 k-ft3 = 763,461.8167 k-in3 6 CE 160 Virtual Work Frame Example Vukazich Fall 2016 7 CE 160 Virtual Work Frame Example Vukazich Fall 2016 Segment ZDE 13.091 ft Z D E Z E 12 k-ft 8 ft 2 ft 6 ft From Virtual Work Integral Table (see page 8): Note that result is negative due to dissimilar curvatures 1 1 − � � � + � = − 13.091 ft 12 k-ft 8 ft + 6 ft 6 ! ! 6 = -366.5454 k-ft3 = -633,390.54 k-in3 Total for segment BDE 763,461.8167 k-in3 - 633,390.54 k-in3 = 130,071.28 Divide by EI of each segment 576,000 k-in3 294,912 k-in3 130,071.28 k-in3 � = + + ! 5,336,000 k-in2 5,336,000 k-in2 3,422,000 k-in2 �! = 0.1079 in + 0.05527 in + 0.03801 in �� = �. ��� in Result is positive, so deflection is in the direction of the unit load – to the right 8 CE 160 Virtual Work Frame Example Vukazich Fall 2016 Product Integral Evaluation using Table 4 in text: 9 CE 160 Virtual Work Frame Example .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us